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ABSTRACT: Scientists worldwide have been inspecting hydrogen production routes and
showing the importance of developing new functional materials in this domain. Numerous
research articles have been published in the past few years, which require records and analysis
for a comprehensive bibliometric and bibliographic review of low-carbon hydrogen production.
Hence, a data set of 297 publications was selected after filtering journal papers published since
2010. The search keywords in the Scopus Database were “green hydrogen” and “low carbon
hydrogen production and materials”. The data were analyzed using the R Bibliometrix package.
This analysis made it possible to determine the total annual publication rate and to segregate it
by country, author, journal, and research institution. With a general upward trend in the total
number of publications, China was identified as the leading country in research on the subject,
followed by Germany and Korea. Keyword analysis and the chronological evolution of several
important publications related to the topic showed the focus was on water splitting for low-
carbon H2 production. Finally, this review provides future directions for technologies and
functional materials for low-carbon hydrogen production.

1. INTRODUCTION
The worldwide energy landscape remains heavily reliant on
fossil fuels, and not surprisingly, global CO2 emissions reached
the highest level in history in 2023.1 This trend poses a major
global threat as climate change intensifies. As a result, there is a
large-scale sprint toward sustainability and decarbonization to
mitigate the impacts of climate change by adopting sustainable
and renewable energy sources.2 In this context, hydrogen has
emerged as a promising energy carrier with the potential to
play a crucial role in the energy transition.
Hydrogen stands out for its abundance, lightness, easy

electrochemical conversion, and high mass-energy density.3
These features enable hydrogen to serve as a versatile energy
carrier, which may be transported as liquid fuel via cargo ships
or through pipelines. Therefore, this gas can revolutionize
several sectors, including transport, energy generation and
industrial processes.4 When used as a fuel, hydrogen forms a
single byproduct (water), thus significantly reducing green-
house gas (GHG) emissions.5 In this way, using hydrogen as
fuel efiectively contributes to the United Nations (UN)
Sustainable Development Goals (SDGs), mainly SDG 7
(Afiordable and Clean Energy), SDG 9 (Industry, Innovation,
and Infrastructure), SDG 13 (Climate Action), and SDG 17
(Partnerships for the Sustainable Development Goals).
Although hydrogen combustion itself does not generate

CO2, there is a global concern about the value chain required

to produce this fuel. Hydrogen is classified into difierent
“colors”, based on the renewability of this production method.6
Gray hydrogen, for example, is produced from fossil fuels,
employing the Steam Reforming of Methane (SMR), which
releases CO2 into the atmosphere during production. Black or
brown hydrogen is produced from coal and contributes to
atmospheric pollution. Blue hydrogen is also produced from
SMR but embeds the capture and storage of the generated
carbon. Despite being less polluting than other options, it
remains insujcient for complete decarbonization.7
On the other hand, green hydrogen and low-carbon

hydrogen are fuels that aim to produce zero- and low-carbon
emissions, respectively, along their whole value chain. This is
only possible if renewable energy sources, such as solar panels
and wind turbines, are used for power hydrogen production,
handling, and transportation.7 Low-carbon hydrogen produc-
tion can be classified into biomass-related and water-splitting
processes.8,9 Biomass methodologies integrate biological
procedures, such as biological water−gas shift (BWGS)
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reaction, dark fermentation (DF), and photofermentation
(PF), while thermochemical processes encompass gasification,
pyrolysis, and liquefaction. The water-splitting category
includes techniques such as electrolysis, thermolysis and
photolysis.2
Several studies in Brazil,10 Spain,11 Africa,12 the Philip-

pines,13 and South Korea14 have already assessed the prospects
for using low-carbon H2 as a key element in decarbonization.
Like all emerging energy sources, there are challenges related
to transportation, production cost, infrastructure development,
and the skilled labor force for large-scale hydrogen production.
Nonetheless, projections already show that this renewable
energy vector will overcome the challenges of the energy
transition in the long term.10 This is confirmed by the high
demand and considerable increase in studies aimed at new
technologies for its production, storage, and use, mainly water
electrolysis studies and the development of new functional
materials such as advanced and efiective electrolyzers.15
Due to numerous studies on the optimization field in

renewable hydrogen production, bibliometric analysis becomes
an easy option to verify trends for each purpose. Through this
analysis, it is possible to track the growth trend of articles and
journals in the area under study as well as the centers with the
largest volume of publications in the area, which documents
have received most citations, in addition to other parameters.
Several published studies have already used bibliometric
techniques on the topics of hydrogen storage,16 production,17
sustainability and challenges,18 and security,19 among others. A
recent bibliometric study based on water electrolysis for
hydrogen production was also conducted.20 However, the
research did not focus on functional materials used for
hydrogen production and was based on studies published until
2023. In addition, numerous studies have already been
published in this present year, and these recent publications
also need to be cataloged and analyzed in a new
comprehensive review of hydrogen low-carbon production.
Among the bibliometric analyses published in the H2

production area, an article by Shiva Kumar and Himabindu
(2019)21 stands out, which has already been cited more than
1,300 times to date and was published in the journal Materials

Science for Energy Technologies. In this publication, the authors
discuss the recent advancements in Proton Exchange
Membrane (PEM) water electrolysis and further improve-
ments in PEM water electrolyzer development for commer-
cially viable hydrogen production purposes. Another recent
work, by Shiva Kumar and Lim (2022),22 has also gained
significant attention, with over 200 citations. The review by
Nechache and Hody (2021),23 which already has more than
120 citations, summarizes the latest progress in research and
development of alternative and innovative materials for
electrolysis cells. Finally, the work by Lokesh and Srivastava
(2022),24 published in Energy & Fuels, provides a state-of-the-
art description of the various strategies to be adopted for the
efiective electrolysis of groundwater. In this way, it is
understood that bibliometric analysis is essential to realize
advances in the area. However, this analysis must be combined
with a critical bibliographic review and not just the use of
software without the supervision and additional treatment of
the researcher.
In this context, the present review article has two main parts.

The first one provides a bibliometric analysis of articles in the
SCOPUS database whose objectives are (i) to analyze
temporal distribution patterns of journal articles related to
the topic of green hydrogen, low-carbon hydrogen, materials,
and productions; (ii) to showcase contributions from authors,
leading countries and the most prolific research institutions;
and (iii) to highlight the outcomes of the most cited articles. In
addition to the bibliometric analysis, a comprehensive
assessment of the research articles addressing the technologies
for low-carbon H2 production that appeared most in the data
set obtained from the SCOPUS database, i.e., the H2
production from biomass and water-splitting technologies, is
presented. This review is especially useful for young scientists
and newcomers to the field. This will help them understand
research trends and discover new opportunities for the
development of innovative materials for renewable hydrogen
production.

Figure 1. Research question and eligibility criteria adopted in the review.
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2. BIBLIOMETRIC ANALYSIS
To contextualize the topic under investigation, first, a
bibliometric analysis was conducted to assess publications
within the field. The works of Donthu et al. (2021)25 and Aria
and Cuccurullo (2017)26 were used to support the
bibliometric methodology, observing the difierent techniques
and guidelines to carry out a reliable analysis (see Figure 1).
The search was conducted continuously over the specified

period without time restrictions on publication using the
Scopus database. The aim was to identify manuscripts
published in indexed journals that would provide insights
into the current state of scientific research on the proposed
topic. The search was conducted during the fourth week of
April 20, 2024, to capture a snapshot of publication numbers,
recognizing that ongoing research activities may influence
these figures over time. The refined search resulted in 297
documents, all of which were considered for bibliometric
analysis (the first part of this review). For the bibliographic
analysis (second part of this review), only experimental
research articles were considered to verify the methods that
were most used in the production of renewable hydrogen.
Bibliometric analyses are a significant aspect of research

assessment, especially in the scientific and applied sectors.27,28
The results of the bibliometric study on green hydrogen, low-
carbon hydrogen, products, and materials are presented in the
following sections, indicating the most prominent research
areas, keywords, ajliations, journals, and countries. Every
aspect of the results was discussed, aiming to disclose research
progress, trends, updates, and critical points related to the
topic.
2.1. Publication Trend. Figure 2 shows the research trend

and the evolution of publications between 2010 and 2024 with

the cluster of collaborations between authors. The search
encompassed the 297 documents that were considered relevant
to the proposed topic.
In 2010, a single article was published, which analyzed a

combined system proposed for methane steam reforming,
comprising conventional hydrogen production and heat
recovery waste from steel production.29 The other articles
that appear in this data set were published in 2013, as a work
by Serrano et al. (2013),30 whose title is “Advances in the
design of ordered mesoporous materials for low-carbon

catalytic hydrogen production”, and the work by Winkler-
Goldstein and Rastetter (2013),31 entitled “Power to gas: The
final breakthrough for the hydrogen economy?” Subsequently,
three documents were published in 2016,32−34 and three more
articles were published two years later (2018). The work by Li
and Tsang (2018)35 was published in Catalysis Science and
Technology and has already received 105 citations, the
document by Tahir et al. (2018)36 was published in
International Journal of Energy Research, with 32 citations,
and finally, the article by Zhang et al. (2018)37 was published
in Energy Conversion and Management, with 41 citations.
In 2020, the number of articles in this area began to increase,

with 9 documents being published, such as the work by
Verlinden (2020),38 published in Journal of Renewable and
Sustainable Energy with 81 citations, and the work by Zhang et
al. (2020),39 published in Nano-Micro Letters and already has
92 citations. Overall, the number of articles produced each year
began to increase sharply in 2021, peaking in 2023, as can be
seen in Figure 1. As the number of articles rises, the number of
scientists with research interests in the topic also increases.
In 2024, the number of published articles had already

surpassed the sum of papers published in 2020 and 2021, when
the rise of publications in the area began, with 49 documents
published by the fourth week of April 2024. Among the most
recent articles, we can mention the work by Li et al. (2024),40
which has already received 11 citations and addresses the
exploration and design of industrial water separation catalysts
for large-scale green hydrogen production. The work by Wei et
al. (2024),41 states that low-carbon hydrogen will be essential
to achieve climate neutrality goals by 2050 and assesses the
future environmental impacts of the life cycle of global H2
production, considering regional developments in the supply of
raw materials and the electrical energy decarbonization.
Thissen et al. (2024)42 explore alkaline water electrolysis in
their paper, highlighting its ongoing potential for large-scale
green hydrogen production. Additionally, they delve into a new
material investigation that could increase ejciency.

2.2. Most Relevant Sources and Authors. Table 1
shows the 15 documents of the set with the highest number of
citations, also showing the journal’s h factor, the number of
articles per journal, the year in which it was first published
considering this data set, the CiteScore for the year 2024, the
most cited article in the magazine, and the number of citations
of that article.
The journal with the largest number of citations was the

Chemical Engineering Journal, reaching 168 citations, it is also
one of the journals with the highest h index, but it is not the
largest number of publications in the field, falling behind the
Journal of Materials Chemistry A, which also has the same h
index. Among the journals featuring the latest publications,
Energy & Fuels stands out. It debuted in this document set in
2021, has published 3 items, and has received 14 citations.
The top three authors, according to Bibliometrix and

Scopus, who appear with the greatest number of publications
in this set of documents are Nam Hoon Kim, Joong Hee Lee,
and Duy Thanh Tran. All of them are ajliated to the Jeonbuk
National University (Republic of Korea), with h-indexes above
40. Their research output in this data set has received over 230
citations. The most cited items describe catalysts intended for
hydrogen evolution reactions (HER) and oxygen evolution
reactions (OER) in an alkaline environment.

2.3. Most Relevant ANliations and Number of
Articles by Country. Regarding the number of documents

Figure 2. Number of articles over the years and authors collaboration.
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by country, these data can be seen in Table 2, which presents
the number of articles by country, the number of citations, and
the percentage of articles with cooperation between other
countries.
As can be seen, China dominates the ranking with 74

documents, also leading in the number of citations, followed by
Germany in citations and Korea in publications. Switzerland
has published just one article but has already garnered 136
citations. This publication, featured in Energy and Environ-
mental Science, quantifies both present and future costs
alongside the environmental impacts of hydrogen production
systems.
Table 2 highlights countries with robust international

collaboration as well as those with less international engage-
ment, such as Korea and Singapore. It is worth highlighting
Spain as a potential country in investigations into the
production of renewable Hydrogen, with 127 citations in
total, where the Consejo Superior de Investigaciones Cientif́ icas is
the institution that most stands out. The international
collaboration advantages are not limited to the expansion of
the network, the exchange of knowledge, and the sharing of
skills but also to a strategy for scientific dissemination and
knowledge mobility.
2.4. Most Cited Documents. This bibliometric research

presents the most referenced works in the low-carbon
hydrogen production field. Table 3 shows the 15 most cited
documents.
Among the most cited papers, the type of H2 production

technology most sought after is electrocatalytic water splitting
by means of difierent processes. One of the most cited articles

was a review article, also showing the importance of this type
of research in academia.

2.5. From Bibliometric to Bibliographic Analysis. The
bibliometric analysis of articles from the Scopus database ofiers
an overview of the most frequently published studies within
the specified keywords and filters. However, the information
presented in this type of survey cannot be measured based only
on the number of citations, most relevant research institutions
in the area, authors who have published the most, and others.
In many cases, good research or publication should only be
assessed by the research itself, regardless of whether it is going
to be cited or not cited. Due to this, the researcher must curate
beyond the raw data provided by the software, thus performing
a bibliographic analysis beyond bibliometric analysis.
Thus, research articles must be selected and analyzed from

the data set for this more comprehensive review. In this study,
of the 297 articles found, 7 deal with optimizations in systems
aimed at green hydrogen produced, and 28 works include case
studies or economic analyses of H2 on a large-scale use.
Another 28 works use modeling, through either DFT
calculation or life cycle analysis (LCA) to verify materials or
better ways to produce low-carbon hydrogen. The other 35
articles are review articles that address the topic of study. As
expected, most articles are research articles (199) where it is
important to highlight the large number of works that research
new materials using difierent technologies for renewable H2
production. However, despite using the filter for “only articles
that address low-carbon hydrogen production”, some articles
were still found that address the steam reforming of methane,
for example. This and other works will not be considered for
this literature review.

Table 1. 15 Sources Have the Highest Number of Citationsa

Journal TC TP (%)
CiteScore
2024 H_Index PY

The most cited article (DOI
reference)

Times
Cited Publisher

1 Chemical Engineering Journal 168 11
(3.70%)

21.5 6 2021 https://doi.org/10.1016/j.cej.
2021.130048

56 Elsevier

2 Journal of Materials
Chemistry A

138 13
(4.38%)

22 6 2013 https://doi.org/10.1039/
D1TA09932A

38 Royal Society of
Chemistry

3 Applied Catalysis B:
Environmental

159 5
(1.68%)

37.9 5 2021 https://doi.org/10.1016/j.apcatb.
2022.121312

68 Elsevier

4 Energies 109 12
(4.04%)

5.5 5 2021 https://doi.org/10.3390/
en14133772

56 MDPI

5 Nanoscale 65 6
(2.02%)

13.6 5 2019 https://doi.org/10.1039/
C9NR00663J

24 Royal Society of
Chemistry

6 ACS Applied Energy Materials 123 7
(2.36%)

9.5 4 2019 https://doi.org/10.1021/acsaem.
9b01392

78 American Chemical
Society

7 ACS Applied Materials and
Interfaces

73 8
(2.36%)

15.7 4 2021 https://doi.org/10.1021/acsami.
2c08246

27 American Chemical
Society

8 Advanced Energy Materials 95 4
(1.35%)

42.6 4 2022 https://doi.org/10.1002/aenm.
202301920

30 Wiley-Blackwell

9 Applied Energy 108 6
(2.02%)

21.1 4 2021 https://doi.org/10.1016/j.
apenergy.2020.116270

57 Elsevier

10 Catalysis Today 65 5
(1.68%)

11.9 4 2022 https://doi.org/10.1016/j.cattod.
2021.09.015

33 Elsevier

11 Electrochimica Acta 25 6
(2.02%)

12.8 4 2021 https://doi.org/10.1016/j.
electacta.2022.141582

8 Elsevier

12 International Journal of
Energy Research

110 5
(1.68%)

7.2 4 2016 https://doi.org/10.1002/er.6487 54 Hindawi

13 Journal of Power Sources 68 5
(1.68%)

15.9 4 2020 https://doi.org/10.1016/j.
jpowsour.2019.227563

23 Elsevier

14 ACS Applied Nano Materials 34 5
(1.68%)

7.9 3 2023 https://doi.org/10.1021/acsanm.
2c04580

21 American Chemical
Society

15 Advanced Materials 69 3
(1.01%)

45,5 3 2023 https://doi.org/10.1002/adma.
202305074

49 Wiley-Blackwell

aNote: TC = Total Citations; TP = Total Publications; PY = Publication Year and MDPI = Multidisciplinary digital publishing institute.
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Among the selected articles, it was observed that the most
studied production technology in the data set was the
electrolytic splitting of water, whose literature review will
give greater focus to the next topics. In addition, other
processes were also studied among the 199 research articles,
which will be discussed in more depth in the following section.

3. TECHNOLOGIES FOR H2 PRODUCTION FROM
BIOMASS

One of the main ways to produce hydrogen sustainably is
through the numerous technologies that use biomass, such as
thermochemical, biological, and electrochemical methods.
Thermochemical conversion is the most established method
for the production of hydrogen from biomass. The process was
established based on a similar process performed on non-
renewable biofuels, such as steam methane reforming (SMR),
adapted to biomethane (renewable) use. The three main
thermochemical routes are gasification, pyrolysis, and aqueous
phase reforming (APR). Gasification is a highly endothermic
process conducted in an oxygen-deficient environment at
∼1000 °C, utilizing an oxidizing agent to produce synthesis
gas, which also contains hydrogen. The process is categorized
based on the oxidizing agent used, including gasification with
air, oxygen, or steam. Steam gasification is regarded as the most
efiective method for H2 production from biomass, as it yields a
high percentage of H2 in the gas (40%), a higher H2/CO ratio,

and fewer impurities compared to air gasification. Additionally,
steam reforming (SR) serves as a complementary purification
step, enhancing the synthesis gas composition during steam
gasification and further increasing H2 yield.55
Another thermochemical route for biomass conversion is

pyrolysis, which operates similarly to gasification but at lower
temperatures (400 to 800 °C), under pressures up to 5 bar,
and without requiring an oxidizing agent. Pyrolysis is classified
based on operating temperature and reaction conditions: slow/
conventional pyrolysis (450 °C), produces high biochar yields
fast pyrolysis (450−600 °C) with high heating rates (∼300
°C/min) and short residence times, generates up to 75% bio-
oil by weight; and ultrafast/flash pyrolysis (above 600 °C) with
extremely high heating rates (>1000 °C/s) and very short
residence times (<1 s), which maximizes gas production. A
third pathway for hydrogen production is aqueous-phase
reforming, where oxygenated compounds are converted into
hydrogen. In this process, feedstock molecules dissolve in
water and react with water molecules at relatively low
temperatures (<270 °C) and high pressures (up to 50 bar).
APR is particularly well-suited for oxygenated hydrocarbons
derived from biomass with a 1:1 C/O ratio and water
solubility, such as methanol, ethanol, ethylene glycol, glycerol,
glucose, and similar compounds.56
Compared with thermochemical processes, biological

conversion occurs at lower temperatures, between 30 and 60
°C and pressures of 1 atm, reducing energy costs. Biological
methods can be divided into the biological water−gas shift
(BWGS) reaction, dark fermentation (DF), and photo-
fermentation (PF). The BWGS reaction uses photohetero-
trophic bacteria using carbon monoxide as a carbon source.
These microorganisms can produce H2 (along with CO2) in
the dark, oxidizing CO and reducing H2O through an
enzymatic pathway. Dark fermentation uses anaerobic
organisms (such as microalgae or specific bacteria) that are
kept in the dark at temperatures between 25 and 80 °C, or
even at hyperthermophilic temperatures (>80 °C), depending
on the strains. Finally, photofermentation is the most recent
biological process used for H2 production. PF is catalyzed by
nitrogenases in purple nonsulfur bacteria to convert organic
acids or biomass into hydrogen from solar energy in a
nitrogen-deficient medium. It is worth noting that all biological
methods also require optimizing numerous parameters and the
development of technologies to be financially competitive and
have the potential for practical application and commercializa-
tion.57
Finally, electrochemical methods are also included in the

production of renewable hydrogen, and among them are the
proton exchange membrane electrolysis cell (PEMEC) and the
microbial electrolysis cell (MEC). PEMECs and MECs are
commonly used for biobased molecules such as ethanol and
glycerol. The conversion of organic matter occurs at the anode
by an oxidation reaction, releasing protons. A reduction
reaction occurs at the cathode, allowing the formation of H2. In
MEC systems, the oxidation of organic matter to produce H+ is
accomplished using electrochemically active microorganisms as
catalysts.58
The research articles described above discuss difierent

technologies for renewable hydrogen production, especially
for H2 production from biomass sources. Table 4 summarizes
the technologies and materials used for this purpose.
As highlighted, one of the most studied technologies are

those related in data set to the use of biomass to produce

Table 2. Number of Documents Per Country, Total Number
of Citations Per Country, Percentage of Publications with
Cooperation, and the Most Productive Institution in the
Country Correspondinga

Country TC TP SCP %SCP
The most prolific research

institution
China 820 74 53 71.62 Chinese Academy of

Sciences
Germany 359 24 17 70.83 Deutsches Zentrum für

Luft- and Raumfahrt
(DLR)

Korea 354 27 2 7.41 Jeonbuk National
University

Australia 231 6 2 33.33 University of New South
Wales

United
Kingdom

225 15 8 53.33 Imperial College London

Singapore 151 2 0 0.00 National University of
Singapore

Switzerland 136 1 1 100.00 Paul Scherrer Institut
Spain 127 11 4 36.36 Consejo Superior de

Investigaciones
Cientifícas

India 113 23 19 82.61 Academy of Scientific and
Innovative Research
(AcSIR)

Italy 85 16 6 37.50 Istituto di Tecnologie
Avanzate per l’Energia

Pakistan 73 5 1 20.00 Lahore University of
Management Sciences

USA 71 13 10 76.92 Texas A&M University
France 52 7 4 57.14 CNRS Centre National de

la Recherche Scientifique
Czech
Republic

49 4 2 50.00 University of Chemistry
and Technology, Prague

Canada 33 4 1 25.00 University of Alberta
Japan 28 4 3 75.00 Shaanxi University of

Science and Technology
aNote: TC = Total Citations; TP = Total Publications and SCP =
Single Country Publications.
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hydrogen, whether through dark fermentation, with the use of
biomass63 or microalgae,62 or by means of pyrolysis64 and
gasification.67 It is noteworthy that bio-oil68 and ethanol69
steam reforming have been investigated as ways of generating
hydrogen with low carbon emissions, making production
greener. Finally, a study using microbial electrolysis cells is
shown in Table 4. A possible emerging area may be related to
these microbial electrolysis cells, as analyzed in the work of de
Moreno-Jimenez et al. (2023).72

4. WATER ELECTROLYSIS FOR GREEN H2
PRODUCTION

Electrocatalytic water splitting is one of the most studied
technologies for hydrogen production. Its fundamentals have
been known since 1789, and by the beginning of the 20th
century, more than 400 industrial alkaline water electrolyzers
were in operation worldwide. In the 1990s, a renewed interest
in water electrolysis was stimulated by hydrogen, which was
regarded as a green energy carrier for renewable energy sources
like wind and solar power. However, it has been only in the
past decade that a significant increase in global interest in water
electrolysis has appeared, with the adoption of ambitious
national climate protection programs. Water electrolysis is
considered a key issue for sector coupling and is expected to
make an important contribution to reducing greenhouse gas
(GHG) emissions close to net zero by 2050. Although the
expression “green hydrogen” is widespread in all current
publications related to hydrogen production from water, some
years ago was not commonly used, as shown in the
bibliometric analysis covering recent entries since 2010.

Alkaline water electrolysis is a well-established mature
technology for industrial hydrogen production up to the
multimegawatt range. However, it is less ejcient than other
newer approaches. This section will review the most advanced
technologies: proton exchange membrane water electrolysis
(PEMWE), anion exchange membrane water electrolysis
(AEMWE), and solid oxide electrolysis (SOWE), focusing
on materials development.

4.1. Proton Exchange Membrane Technology. Proton
exchange membrane water electrolysis (PEMWE) has emerged
as an up-and-coming technology for sustainable H2 production.
It is a favorable and reliable option for ejcient hydrogen
splitting that provides interesting advantages such as the
system design’s compactness, high current density, exceptional
ejciency achieved, and rapid system responses with
minimized gas crossover rates. However, their widespread
application relies heavily on developing high-performance and
cost-efiective HER and OER electrocatalysts.
Electrocatalysts containing Pt, Ir, and, in some cases, Ru

have been demonstrated to be able to reduce overpotentials for
HER and OER, respectively. This excellent behavior contrasts
with their large cost and limited availability, which remains the
main shortcoming of widespread commercial application.
Considerable research efiort has been devoted to developing
non-noble metal catalysts for PEM applications, although their
substantially lower ejciency makes the good performance of
noble metals outweigh their cost.73,74 Simple transition metal
oxides have garnered significant attention as a result of their
claimed performance in acidic conditions.75 The most recent
strategies for materials research are based on first-principles
calculations such as Density Functional Theory (DFT),76

Table 3. Most Cited Documents Consider the Set of Data Analyzeda

Ranking Authors Title TC Journal Year ref

1 Song Lin Zhang (Zhang
et al., 2021)

Engineering Platinum−Cobalt Nanoalloys in Porous Nitrogen-Doped Carbon
Nanotubes for Highly Ejcient Electrocatalytic Hydrogen Evolution

151 Angewandte Chemie
International Edition

2021 (44)

2 Tom Terlouw
(Terlouw et al., 2022)

Large-scale hydrogen production via water electrolysis: a techno-economic and
environmental assessment

136 Energy and
Environmental Science

2022 (43)

3 Molly Meng-Jung Li (Li
and Tsang, 2018)

Bimetallic catalysts for green methanol production via CO2 and renewable
hydrogen: a mini-review and prospects

105 Catalysis Science and
Technology

2018 (35)

4 Shucong Zhang (Zhang
et al., 2020)

2D Co-OOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA/cm2

-level-current-density hydrogen evolution over 100 H in Neutral water.
92 Nano-Micro Letters 2020 (39)

5 P. J. Verlinden
(Verlinden, 2020)

Future challenges for photovoltaic manufacturing at the terawatt level 81 Journal of Renewable
and Sustainable Energy

2020 (38)

6 Li Wang (Wang et al.,
2019)

High-performance anion exchange membrane electrolysis using plasma-sprayed,
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machine learning, and optimization approaches to reduce the
overpotential for metal-based and metal-free OER and HER
electrocatalysts.77,78
On the other hand, the electrolyte used in these systems is

also a main concern. The initial idea of using an organic cation
exchange membrane as a solid electrolyte in electrochemical
cells was first described in 1959 by Grubb, a scientist working
for General Electric Company.79 The resins used for this
purpose were changed in the following years, but it was in
1962 that the perfluorosulfonic acid membrane, Nafion, led to
a breakthrough in this technology. The most used polymers in
proton exchange membrane electrolysis cells over the years are
compiled in Figure 3.

The use of fluoropolymers for PEM is currently key for the
hydrogen electrochemical technologies, and no alternative is
foreseen to be able to substitute them in the short term. The
primary motivation for using hydrocarbon polymers in PEM
cells is the need to reduce the widespread use of perfluorinated
compounds. In this regard, the application of graphene oxide-
based films as proton exchange membranes has been recently
proposed as a viable option.87−89

Although PEM water electrolysis technology is becoming a
mature technology, its main limitation lies in its cost and high
operating voltage use. Among the difierent component costs,
bipolar plate materials and manufacturing account for 40%−
60% of a water electrolysis stack.90−93 Materials used for
bipolar plate (BP) manufacturing must have excellent strength,
low resistivity, high thermal conductivity, and low hydrogen
permeability. In particular, the anode-side plates are expected
to operate under a demanding corrosive environment
(typically, 1.6−2 V, pH 2−4, 50−90 °C, and O2-saturation).94
Their corrosion has a large impact on the whole PEMWE stack
since dissolved metal ions would migrate to the membrane/
electrodes, and both the ionic conducting and catalytic
performance would be afiected, resulting in reduced I−V
performances and increased cell voltages at a given electrolysis
current.95 As a reference for the most recent targets established
for these components, they should have a lifetime no shorter
than the stack target lifetime, e.g., 80,000 h, corrosion current
density, electrical resistivity, and interfacial contact resistance
should be as low as possible, even lower than in PEM fuel cells
(∼1 μA cm−2) considering the long service lifespan required

for electrolyzers in H2 production without high overpotentials
and ohmic losses.
Titanium is a state-of-the-art candidate for PEMWE plates.

Its good anticorrosion properties in the acidic medium due to
the formation of a protective oxide film on its surface act as a
barrier to the external corrosive environment. In addition, its
low density (4.5 g cm−3) allows for achieving high gravimetric
power density of the stacks, however, there are some concerns
regarding its use.90−95 Other metals, such as stainless steel,
aluminum, copper and nickel alloys have been investigated
using suitable coatings.94−98 Therefore, materials that avoid
overpotentials and ohmic losses of electrolyte, membrane, and
electrode resistances have been studied. In addition, the efiect
of temperature must be considered, since PEM at low
temperatures can slow down the reaction kinetics.99

4.2. Anion Exchange Membrane Technology. Anion
exchange membrane electrolysis (AEMWE) is an emerging
technology that combines the benefits of two technologies:
alkaline water electrolysis (AWE) and proton exchange
membrane water electrolysis (PEMWE). It replaces the
nonconductive porous diaphragm of the AWE for a nonporous
anion conductor solid membrane, enhancing safety and
eliminating the need for highly concentrated KOH solutions.
As a result, it operates more ejciently at high pH levels
without critical raw materials (CRM) such as platinum group
metals (PGM). Additionally, it can operate at higher current
densities thanks to lower ohmic resistance, allowing for the use
of smaller devices similar to those of PEM devices.100,101
AEMWE involves two electrochemical half reactions occurring
in the electrolyte: the HER at the cathode, where the protons
and electrons recombine, and the OER at the anode. These
reactions are represented in eqs 1−3 together with the scheme
of the AEMWE shown in Figure 4.

The current challenge in developing AEM catalysts lies in
optimizing their activity, chemical composition, and stability
when integrated into the AEM system. For instance, while
water splitting theoretically requires a voltage of 1.23 V, actual
operating voltages typically range from 1.7 to 2.3 V. This
discrepancy is primarily due to unfavorable properties of the
electrode materials, such as overpotentials and inadequate ion
and gas dispersion, as well as system-related factors like liquid
electrolyte concentration and other resistances.101−106

Regarding the materials used in the process, platinum group
metals (PGMs), particularly platinum, exhibit the highest
exchange current density. However, their high cost and limited
availability make them impractical for large-scale electrolyzer
production. PGM-free electrocatalysts, while more economical,
generally have lower mass-specific activity compared to PGMs.
This necessitates a higher loading on the membrane electrode
assembly (MEA), which in turn leads to significant ohmic
resistance losses.107

Figure 3. Some membranes used in PEM.80−86

Figure 4. General schematic diagram of the AEMWE.
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The 3d-transition metals (Ni, Co, Fe, Mo, Mn, and W) used
have been considered for many years as catalysts for water
splitting. The interest of these metals and alloys is based on
their partially full d-orbitals which allow for easy participation
in reagent-mediated electron transfer, they present difierent
oxidation states and ability to form complexes, which may
decrease overpotentials and increase energy ejciency.108,109
4.2.1. HER and OER Catalysts. Hydrogen Evolution

Reaction (HER) on difierent metals is one of the most widely
investigated reactions. Even though there are currently good-
performing electrodes, there is great interest in finding
electrodes that further reduce the overpotential for HER to
minimize energy consumption during water electrolysis. In
alkaline media, the HER mechanism occurs in three reaction
steps (Volmer step, Heyrovsky step, or Tafel step).101,104,106
The rate-limiting step of the whole mechanism is the

formation of the initial hydrogen intermediate by H2O
dissociation and subsequent Had adsorption on the catalyst
surface. In AEM electrolysis HER requires more energy to
break the covalent O−H bonds of water, being a crucial step
that determines the HER activity.103
Regarding the OER reaction, the anodic reaction (oxygen

evolution) of the overall water-splitting reaction in alkaline
media has an equilibrium potential at standard conditions of
1.23 V versus reversible hydrogen electrode (RHE).

+ +4OH 4e O 2H O2 2 (4)

For this reaction to take place at reasonable rates is
necessary to apply higher overpotentials than those needed for
the HER. This is due to the sluggish kinetics of the OER due
to its reaction mechanism that involves 4 proton-coupled
electron transfer steps.101,110,111
An enormous number of materials have been tested to

determine their electrocatalytic activity toward the OER in
half-cells using a three-electrode setup. Following, some of the
materials are investigated for use as anionic catalysts for AEM
electrolyzers. A review of HER and OER materials can be seen
in Table 5.
As mentioned, studies seek to replace precious metals in the

HER and the OER catalysts. One of the most investigated

materials used as an HER catalyst is Ni, which has the highest
corrosion resistance in alkali media, and its hydrogen binding
energy is close (but lower) to that of Pt. The cooperative
interaction of metals with difierent hydrogen binding energy
(HBE) could emulate the activity of PGM electrocata-
lyst.108,110 Various authors have studied Ni-based alloys with
metals or oxides (Fe, Cu, Ti, Mo, Co, Sn, MoO2, CeO2) to
prevent Ni hydride formation and increase their stability.107
Alloys containing Mo seem to have high activity and present
high corrosion resistance in alkaline media and good electrical
conductivity and thermal stability. This high catalytic activity
of NiMo alloys is attributed to the synergistic efiect of adjacent
resulting in unsaturated d-orbitals similar to Pt. Incorporation
of nonmetallic elements such as C, N, S, O, P, and B can also
alter the adsorption-free energy of reaction intermediates
helping the fast water dissociation, although most works
reported better HER performance in acidic than in alkaline
media.118 In the case of (Co4N@NC), N-doped C suppresses
the surface oxidation of CoNx in alkaline media and enhances
the electrical conductivity.115
Similar to nitrides, carbides exhibit Pt-like properties and

HER activity due to the shift of d-band center.119 It is claimed
that Mo2C nanocrystalline coupling with Ni has been
successfully encapsulated into a Ni-doped carbonaceous
network (Mo2C/NC@0.5Ni) and Mo2C/NCNT@0.5Ni as
inexpensive transition metal catalysts for AEM electrolyzers.
However, when it was tested both as bifunctional catalysts, this
structure provided an overall structural flexibility and ion/
electron transport kinetics. TM oxide-based materials are
promising candidates for catalyzing the HER due to their
composition and structural diversity, which ofiers electronic
and crystal structure flexibility with various chemical and
physical properties. The low cost, earth abundance, easy
synthesis, composition and structural diversity, and flexible
tenability make them attractive for HER catalysis since ejcient
and cost-efiective catalysts are critical to widespread the
hydrogen as a clean energy carried. Based on their structural
features, metal oxides are classified into single oxides, spinel
oxides (AB2O4), perovskite oxides (ABO3), Rudddlesden-
Popper type oxides (An+1BnO3n+1), metal hydroxides (oxo),

Table 5. Materials Used Most in the HER or the OER Reactions

Reaction Materials Properties ref
HER Ni and Ni-based alloy with metals or oxides

(Fe, Cu, Ti, Mo, Co, Sn, MoO2, CeO2)
Highest corrosion resistance in alkali media (hydrogen binding energy is close to that of
Pt)

106−108,
112−114

HER Transition metal (TM) nitrides − NiN/Ni Enhanced HER activity by doping with Mo or Co. Metallic matrix presents low
overpotentials, however, their stability decreases with time.

115

HER NiMo, NiW, CoMo and CoW alloys Superior activity of NiMo and CoMo in alkaline fuel cells. 116, 117
HER Nonmetallic elements (C, N, S, O, P and B) Alter the adsorption-free energy of reaction intermediates, leading to fast water

dissociation
118

HER Carbonates (Mo2C/NC@0.5Ni) and S- and
Se-based compounds

Pt-like properties and HER activity due to the shift of the d-band center 119−122

HER Spinel oxides (AB2O4), perovskite oxides
(ABO3), Rudddlesden-Popper type oxides
(An+1BnO3n+1)

Low cost, earth abundance, easy synthesis, composition and structural diversity, and
flexible tenability

123−125

OER Electrodeposited Ni and Fe alloys Aging and activations reduce the OER overpotential by thickening the Fe-doped Ni-oxo-
hydroxide layer

126, 127

OER Ni, Co and Fe oxides Oxidation of Co and Fe to higher oxidation states also increases the OER activity 128, 129
OER LaCoO3 Surface reconstruction by synthesizing an amorphous layer on the surface (LSCF-0) by Co

reduction to Co2+ enhances the performance
130, 131

OER LaNiO3 The created lanthanum deficiency facilitates the segregation of NiO from the initial matrix
forming an interface between the perovskite and NiO phase, resulting in a 4.5-fold
increase in OER activity

132

OER Co-based electrode supported on FeOxHy
(Fe@Co)

The overpotential was low and showed the lowest average degradation rate. 133, 134
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specially structured metal oxides, oxide-containing hybrids.
Detailed information about the HER behavior of some of these
oxides was summarized by Zhu et al.123 Despite these above-
mentioned HER electrocatalysts having been tested, there are
still no electrocatalysts that ofier kinetics superior to or similar
to that of platinum.124,125
Regarding OER, many materials have been tested to

determine their electrocatalytic activity. Electrodeposited Ni
and Fe alloys with difierent compositions and crystallographic
orientations were also studied. Their chemical composition
strongly influences their initial electrochemical performance.
Aging and activations reduce the OER overpotential by
thickening the Fe-doped Ni-oxo-hydroxide layer. The layer
Ni3+/Ni2+ capacity and the ratio Fe/Ni determine the apparent
OER kinetics. The alloy must develop a thick Ni-rich active
surface layer (large number of Ni active sites) and ejcient
sites (large Fe/Ni ratio: 0.2 < x < 0.4).127 The electrocatalytic
activity of Ni, Co, and Fe oxides toward the OER based on the
overpotential follows the order: Ni > Co > Fe, inversely to the
bond strength OH-M2+δ (0 ≤ δ ≤ 1.5) order. Ni oxidation
(Ni2+ to Ni3+) produces Ni(OH)2 transformation in NiOOH.
Oxidation of Co and Fe to higher oxidation states also
increases the OER activity.128
4.2.2. Other AEMWE Components. The AEM allows the

migration of hydroxide anions from the cathode to the anode
and physically separates both compartments to avoid the
crossover of reagents and products, hence it must fulfill several
requirements: (i) ionically conductive; (ii) thermal, mechan-
ically, chemically and electrochemically stable; (iii) low cost,
easy to process and produced by sustainable processes.101
AEM consists of polymer backbones where the anion exchange
cation functional groups, which confer the anion selectivity, are
anchored.101,102,135−139 Figure 5 shows this type of component
and the others that can be observed in AEMWE electrolysis.
The porous transport layer (PTL) is a major contributor to

the performance of AEMWE.140−143 PTLs in AEMWE as
compared to those of PEMWE have the advantages of reduced
cost and a dramatic reduction impact on CRMs. The preferred
material for the PTL on both the anode and cathode side is
nickel. Figure 5 also presents a summary of the most
commonly used materials in the anode and cathode.144−148

About the membrane electrode assembly (MEA), this
system contains the AEM, ionomer, anode, and cathode.
There are two common methods to deposit the catalytic layer:
producing catalyst-coated substrates (CCS) or catalyst-coated
membranes (CCM). The CCSs are prepared by coating the
PTL with the corresponding catalytic ink, homogeneous
suspension of the catalyst, and binder. In contrast, catalytic
layers are deposited on both sides of the membrane in CCMs.
Mechanical or hot pressing is used when the MEA is placed
between the PTL. While a hot press is usually used for PEM
cells, this option is not good for AEM since mechanical force
and high-temperature damage the membrane.149 In summary,
it is essential to carry out several studies to optimize the MEA
design since, as previously mentioned, this architecture directly
influences the final water-splitting results. An ejcient design
minimizes ohmic resistances, while poorly designed electrodes
can create barriers that increase resistance and reduce
ejciency. The cell assembly must ensure uniform water
distribution to the catalytic electrode and the rapid removal of
gaseous products. Dispersion problems can result in the
formation of gas bubbles that block active areas, increasing the
overpotential.
Concerning HER and OER catalysts, the choice of specific

materials for the cathode and anode as well as the uniformity in
the application of the catalyst on each electrode (in addition to
the adequate assembly of the components) directly impacts the
current density. A well-designed electrode ensures that all
reactive areas efiectively participate in the reaction, avoiding
local ejciency losses. Studies to focus on new catalytic
materials and homogeneous deposition techniques are
fundamental since slow kinetics may require higher over-
potentials to achieve the desired reaction rate. The oxygen
evolution reaction is particularly challenging due to its slow
kinetics as it involves a multiple electron transfer process. This
significantly contributes to voltage losses. Although HER is
faster compared to OER, nonprecious catalysts exhibit higher
overpotentials than platinum, especially in alkaline systems.

4.3. Solid Oxide Water Electrolysis Technology.
Among the difierent water electrolysis technologies, the high-
temperature steam electrolysis process, via Solid Oxide
Electrolysis Cells (SOECs), is the most ejcient electrolysis

Figure 5. Other essential components in the AEMWE electrolysis.
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method and it has attracted much attention over the past
decade. This technology, which operates at high temperatures
(700−800 °C), shows a very high ejciency (>95%) and low
energy consumption to split water into hydrogen (<40 kWh/
kg H2) due to advantageous thermodynamics and enhanced
HER and OER kinetics.150,151 It means a strong reduction in
hydrogen cost, as power consumption is the main contributor
to the cost of hydrogen in the electrolysis processes.
Although high temperature is beneficial in terms of ejciency

and performance, it causes structural degradation and makes
long-term applications dijcult. In this sense, an intensive
search for new materials and cell configurations is taking place
to decrease the operating temperature and mitigate cell
degradation processes. Nevertheless, long-term tests of
SOEC stacks have been performed for above 4000 h, with
70% steam conversion and high performances, with a current
density of 0.85 A/cm2 and about the thermoneutral voltage
(1.3 V).152−154 They lead to a low degradation of <2% after
1000 h of continuous operation.
A solid oxide electrolysis cell is constituted of two

electrodes: an anode or air electrode and a cathode or
hydrogen electrode, both separated by a dense ionic
conducting electrolyte. Depending on the nature of the ion
conducted through the electrolyte, two categories of Solid
Oxide Electrolysis are distinguished, the traditional oxide ion-
conducting electrolysis cells (SOECs) and proton-conducting
electrolysis cells (H-SOECs) that have attracted increasing
interest due to their lower operating temperatures (450−700
°C).155 As shown in Figure 6, in the case of a solid oxide

electrolysis cell (SOEC), water is supplied at the cathode side
(H2 electrode) and it is reduced into H2 and oxide-ion (O2−)
that is conducted through the electrolyte to the anode side (air
electrode) to form O2 by oxidation. On the contrary, in the
case of proton-conducting solid oxide cells (H-SOEC) water is
supplied at the anode side (air electrode) and forms protons,
using renewable electricity (for green hydrogen).
Protons are conducted through the electrolyte to the

cathode side (hydrogen electrode) and produce hydrogen.
Due to the better proton transport facilitated by the electrolyte,
compared with the oxide-ion conducting counterparts, in
which ionic transport is realized by less mobile oxygen anions,
the H-SOECs are able to operate efiectively at lower
temperature ranges.156 Another advantage of these electro-
lyzers over oxygen-conducting cells (SOECs) is the formation
of pure hydrogen at the fuel electrode, not having to require its
separation from steam.
HER and OER reactions take place at the triple phase

boundaries (TPBs) where the ionic phase (oxygen ion or
proton conductive), the electrical phase (e-conductive), and
the gas (hydrogen release or steam supply) coexist. For that,
the electrolyte must be highly conductive for ions (O2− or H+

for SOEC or H-SOEC, respectively), electrically insulating to
prevent electronic conduction, and sujciently dense to avoid
gas transport between electrodes. On the other hand, HER and
OER electrodes should be porous materials with mixed ionic−
electronic conductivity and catalytically active to allow good
performance.157 Finally, interconnect materials also play a key
role in the stacking of electrolyzers; they connect individual
cells to each other, providing mechanical support and
conductivity for the stack. They work as a current collector,
completing the electrical circuit of the system, and act as a
physical barrier between the hydrogen electrode and the air
electrode of adjacent cells. They should show high electrical
and thermal conductivity and high stability under both
oxidizing and reducing atmospheres. All of the materials that
form the SOEC electrolyzer must show suitable thermal and
chemical compatibility over time to avoid cracks and cell
degradation to ensure sujcient durability. The main
degradation processes observed in these systems are the
delamination at the interface electrode/electrolyte, which can
be avoided by optimizing the microstructure and electrodes,
gas difiusion through the fuel electrode due to the high
humidity, and degradation of electrodes due to microstructure
coarsening during sintering, migration of elements, or
formation of secondary phases.
Several materials have been researched for the difierent solid

oxide electrolyzer components; Table 6 briefly summarizes the
latest progress in the development of new materials for
traditional oxide ion-conducting electrolysis cells (SOECs).
Over the past decades, many efiorts have been made to

decrease the operating temperature to the low or intermediate
range to prevent cell degradation. In this sense, proton-
conducting solid oxide cells (H-SOECs) provide an excellent
basis for advances in high-temperature solid oxide devices. The
facilitated ionic transport in proton-conducting electrolytes,
mainly BaZrO3-based electrolytes, enables these cells to
operate at significantly lower temperatures (below 500 °C),
ofiering high ejciency and excellent performance. Novel
functional materials and technological strategies to optimize
the H-SOECs have been recently summarized.221,222

5. CHALLENGES AND PERSPECTIVES
5.1. Opportunities for Biomass for Low-Carbon

Hydrogen Production. A viable alternative to the natural
gas steam reforming technique is the use of biogas, or
biomethane, which has the extra benefit of being renewable
feedstock economically generated that lessens pollution by
eliminating the emission of methane into the atmosphere.
Landfill gas recovery facilities and anaerobic digesters for
biowaste treatment, including municipal solid waste (MSW),
fertilizers, and energy crops, are great opportunities for biogas
and biomethane production. In addition to reducing landfill
waste, biogas production also yields nutrient-rich fertilizer as a
byproduct. In biogas steam reforming processes, numerous
supported catalysts have been tested. The materials that are
mostly used as catalysts in reforming are nickel-based, such as
Ni/Al2O3, due to their low cost and satisfactory ejciency. The
main problem with Ni-based catalysts is that they are subject to
several types of deactivations, including sintering, oxidation,
carbon deposition, and sulfur poisoning. Intensive research
efiorts are currently being made to improve the performance
and lifetime of alumina-supported nickel catalysts.223
Ruthenium, nickel, and iron nanoparticles have demon-

strated good catalytic activity in steam reforming. Entrapping

Figure 6. Difierent types of solid oxide electrolysis for green hydrogen
production.
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nanoparticles for hydrogen production rather than chemically
produced ones might save costs. Nanoparticle recycling has
been successfully shown in several investigations. Although it
has been suggested that employing green nanoparticles might
potentially lower operational costs, it is evident from the data
collected from several studies that adsorption is still expensive
even when using green nanoparticles that have been
manufactured.224 The inexpensive and ecologically friendly
nanoparticle development should improve the perspectives of
hydrogen production via biogas steam reforming.
5.2. Opportunities for Microbial Electrolysis Cell

(MEC). Another viable technology for low-hydrogen produc-
tion is the Microbial Electrolysis Cell (MEC), which carries a
unique benefit because it demonstrates good potential to
convert biomass and waste organics into high-quality H2 while
concurrently solving environmental challenges, such as waste-
water treatment. MECs employ electroactive bacteria in the
anodic chamber and reduce the external voltage needed for H2
evolution. Compared to abiotic water splitting that requires
∼1.8 V-2.0 V to overcome the thermodynamic barrier, MEC
leverages the chemical energy in organic compounds. As a
result, much less external voltage (∼0.6−1.0 V) is required,
and even such a small voltage need can be met when a
traditional cathode is replaced with a photocathode or by
deploying an in situ power management circuit.225,226
Regarding the materials used in the anode, some properties

should be considered such as high conductivity, high corrosion
resistance, the possibility of bacterial attachment, and large
surface area. In addition, the material should be economical
and sustainable. Carbonaceous materials, such as graphite rods,
carbon brushes, graphite felt, plain carbon cloth, and activated
carbon, are the most preferred for making anode electrodes.
Regarding the cathode, materials such as titanium, silver mesh,
and nickel foam are investigated. Some carbonaceous materials
are also considered as cathode materials but they are found to
have slow HER rate due to their high potential and platinum is
a potential material that can be used to minimize this
problem.227
A comparison was made by Tang et al. (2022)226 of H2

production recovery rates (HPRs) among all reported MEC
cathodes by catalyst. HPR is an important indicator of MEC
performance, indicating the volume of H2 produced per MEC
reactor volume over time. The highest HPR of 4.2 m3/m3 day
using new types of catalysts (stainless steel, copper, manganese,
and molybdenum) was lower than the absolute maximum rates
that Pt and Ni foam achieved in the previous decade (between
17.8 and 50 m3/m3 day). While novel catalysts have been
demonstrated to exhibit suitable performances, it can be
dijcult to directly compare these catalysts when data are
collected from separate experiments under difierent conditions.
Therefore, studies conducted with uniformly designed experi-
ments are necessary to ensure that results are comparable.
In summary, MEC is a promising technology, as it can

convert organic waste into hydrogen and other value-added
chemicals with only a small energy input. However,
optimization of sustainable hydrogen production should be
carried out more carefully because, in addition to the materials
that can be varied (e.g., anode, cathode, membrane), other
parameters can afiect MEC performance, including bacteria,
substrate composition, and the designs and configuration of
the MEC.
5.3. Opportunities for Water Electrolysis. Concerning

the splitting process used for H2 production, water electrolysis

(whether by PEM, AEM, or SOEC technology) is an energy-
intensive process that benefits from the use of catalysts.
Because the canonical HER catalyst for PEM electrolysis is Pt
and the OER catalysts are IrO2 and RuO2, an important
research focus for low carbon hydrogen production has been
the development of catalysts that rival scarce metals in
performance but with reduced or eliminated metal loading.
As seen in this article, recent materials research landscape in
this area can be visualized in many ways. Photocatalysts and
nanomaterials (nanoparticles, nanosheets, nanocomposites)
are a new trend in materials for hydrogen production.228,229
The most optimal HER electrocatalysts can reduce energy

and cost compelled for electrochemical water splitting through
the decreased overpotential. Therefore, research development
to produce ejcient nonprecious electrocatalysts for HER is
critically important and challenging. The electrocatalysts in
HER are Ni and Co-based, including nickel-based alloys,
nickel-based phosphides, cobalt oxides, cobalt phosphides,
cobalt sulfides, cobalt selenides, and other transitional metal-
supported nanomaterials such as molybdenum disulfide
supported carbon nanotubes (MoS2/CNTs), nickel phosphide
supported CNTs (Ni2P/CNTs), cobalt doped iron disulfide
CNTs (FeS2/ CNTs), tungsten dioxide supported carbon
nanowires (WO2/C), Co−Fe nanoalloys, and nickel-yttria-
stabilized zirconia (Ni-YSZ).230,231
AEMWE can play a key role in the predicted enormous

growth of green hydrogen technology with essential R&D
advances in the coming years. The reality, however, is that
AEM membranes have chemical and mechanical stability
problems, leading to unstable lifetime profiles. Moreover,
performance is not yet as good as expected, mostly due to low
AEM conductivity, poor electrode architectures, and slow
catalyst kinetics.232 Another challenge to be overcome by
AEMWE is the low stability of most membranes in alkaline
media and the need to increase their ionic conductivity to
operate efiectively with a reduction in the alkalinity of the feed
solution to ultimately use water and even seawater.233
Some other key design parameters essential for commerci-

alization are (i) stable alkaline OER catalyst design with high
electronic conductivity and minimal surface reconstruction
during operation. These catalyst layers must be applied to the
MEA with scalable, industrial techniques; (ii) ionomer
oxidation mitigation strategies should be developed, this
could lead to other creative catalyst layer designs.232,233
Transition metal catalysts with excellent electrocatalytic
properties can contribute to improving performance for
AEMWE. Nevertheless, NiFe-based catalysts remain promising
to be used in the anode due to their active OER. Catalysts
should maintain their stability for long periods but also must
operate efiectively when operated at high current densities and
intermittent power supply, since power fluctuation from wind
and solar energy may deteriorate their performance.233
Concerning the PTLs or GDLs, the future challenges are

related to the optimization of morphology and porosity to
enhance gassing while maintaining the conductivity and
mechanical structure. Another aspect that should be
investigated is the reduction of their thickness to decrease
costs while maintaining the mechanical stability. Another way
to reduce costs is the substitution of nickel for stainless steel,
although it might reduce the performance a bit, as indicated
previously. Some of the proposed activities to fill the real gaps
were summarized by the International Renewable Energy
Agency (IRENA) in its 2020.234
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In contrast to other water electrolysis technologies, more
widely commercialized, SOECs operate at much higher
temperatures, which confers higher ejciency and current
densities, which are of great interest for the future demand of
clean hydrogen production. However, their commercial
availability is mainly limited by aspects, such as lifetime and
power cost. In this sense, future research is mainly focused on
the development of novel materials with high chemical
stability, new coating technologies, and the optimization of
operating conditions to improve the performance and address
degradation phenomena.

6. CONCLUSION
A bibliometric analysis using the R Bibliometrix tool was
performed, where 297 publications were selected after filtering
journals published since 2010. This analysis allowed us to
determine the total annual publication rate and segregate it by
country, author, journal, and research institution. With an
overall upward trend in the total number of publications,
China was identified as the current leading country in research
on the topic, followed by Germany and Korea. The analysis of
several parameters related to the low-carbon hydrogen
production topic showed that the focus has been on water
splitting for renewable H2 production.
Massive progress has been made in the functional materials

field and technologies for low-carbon hydrogen production in
recent years, and efiorts to find better and cheaper catalysts
have brought this technology closer to mass production and
operation. However, there are significant challenges that have
not yet been fully addressed yet. This review identifies major
barriers to ultimate commercial large-scale hydrogen produc-
tion by water electrolysis. First, the development of non-noble
metal OER electrocatalysts with high activity and long-term
stability performance in acidic media remains a challenging
area of research and development. For the HER, there are
various ejcient non-noble metal electrocatalysts available in
acid media. However, for the OER, most of the ejcient OER
catalysts are Ir and Ru-based electrocatalysts which have higher
dissolution resistance in acidic conditions. For non-noble-
metal-based electrocatalysts, most of them cannot survive
under such conditions. Thus, there is a clear need for the
development of stable and robust non-noble metal OER
electrocatalysts. Second, there is limited knowledge of detailed
catalytic mechanisms, especially for transition-metal-based
HER and OER electrocatalysts. The intrinsic active site of
electrocatalysts cannot be completely determined based on the
descriptor of turnover frequency. Recently, non-noble-metal-
based carbides, phosphides, and chalcogenides have drawn
great attention due to their high performance for the OER in
alkaline media. However, the nanostructured electrocatalysts
undergo composition and structural transformations during the
reaction under the OER conditions.
Therefore, understanding the structural transformation is

required to determine the real active phases and sites. Gaining
insight into the detailed mechanism, structural transformation,
and real active sites is critical for the rational design of optimal
performance catalysts. Integration of in situ characterization
techniques and theoretical modeling is an advanced approach
to gain insights into the structural transformation, reaction
intermediates, and catalyst reaction pathways. Third, it is
dijcult to directly compare various nanostructured catalyst
materials based on the performance descriptors due to the
difierent mass loadings of the catalysts on the electrode and the

difierent materials of the substrate, which may afiect the
electron transfer rate by difierent electrochemical measurement
methods. More efiective electrocatalyst screening strategies are
needed to establish a standard evaluation protocol for efiective
comparisons of the performances of catalysts from various
research groups. Nevertheless, the surge of recent interest in
nanostructure and lattice oxygen engineering of catalysts is
expected to lead to new advances in the design of active, stable,
and low-cost OER and HER electrocatalysts for the mass
commercialization of water electrolysis-based hydrogen
production.
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aluminum production (Hall-Heŕoult process) for Rio Tinto Alcan
(France). In 2014−2015 her research was devoted to the material
development for hydrogen production by thermochemical cycles
assisted by solar concentration systems. Her current research, since

2015, is focused on the development of materials and components for
hydrogen production by electrolysis at both low and high temper-
atures and high-temperature fuel cells.

Dr. Rita X. Valenzuela is a tenured scientist at CIEMAT (Spain) and
has three main research areas: (1) evaluation in processes of industrial
interest from an environmental and energy point of view, (2)
renewable electricity generation and (3) application of the solar
resource in energy ejciency. The results have led to 55 publications
(57.5% in the first quartile) and over 100 conference contributions.

0 ACKNOWLEDGMENTS
We would like to thank Brazilian funding agencies: National
Council for Scientific and Technological. Development -
CNPq (Proc. No. 443423/2023-7) and State Funding Agency
of Ceará - Funcap (Rede VERDES Project No. 07548003/
2023). Also, this work was developed within the scope of the
projects: Spanish Ministry of Science and Innovation (MCIN/
AEI/10.13039/501100011033) and “NextGenerationEU”/
PRTR under contracts TED2021-130366B-100 (TEDDY);
TED2021-131972B-I00 (HYSTORE), the Regional Govern-
ment of Madrid and MCIN/AEI/10.13039/501100011033, by
“NextGenerationEU/PRTR” (GreenH2-CM), H2Excellence:
Fuel Cells and Green Hydrogen Centers of Vocational
Excellence towards afiordable, secure, and sustainable energy
for Europe, EU Project 101104447 (H2Excellence).

0 REFERENCES
(1) IEA (2024), CO2 Emissions in 2023, IEA, Paris,https://www.iea.
org/reports/co2-emissions-in-2023, Licence: CC BY 4.0.
(2) Zainal, B. S.; Ker, P. J.; Mohamed, H.; Ong, H. C.; Fattah, I. M.
R.; Ashrafur Rahman, S. M.; Nghiem, L. D.; Indra Mahlia, T. M.
Recent advancement and assessment of green hydrogen production
technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941.
(3) Agyekum, E. B.; Nutakor, C.; Agwa, A. M.; Kamel, S. A Critical
Review of Renewable Hydrogen Production Methods: Factors
Affecting Their Scale-Up and Its Role in Future Energy Generation.
Membranes. 2022, 12 (2), 173.
(4) Oliveira, A. M.; Beswick, R. R.; Yan, Y. A Green Hydrogen
Economy for a Renewable Energy Society. Curr. Opin. Chem. Eng.
2021, 33, 100701.
(5) Alasali, F.; Abuashour, M. I.; Hammad, W.; Almomani, D.;
Obeidat, A. M.; Holderbaum, W. A review of hydrogen production
and storage materials for efficient integrated hydrogen energy systems.
Energy. Sci. Eng. 2024, 12 (5), 1934−1968.
(6) Dash, S. K.; Chakraborty, S.; Elangovan, D. A Brief Review of
Hydrogen Production Methods and Their Challenges. Energies. 2023,
16 (3), 1141.
(7) Atteya, A. I.; Ali, D.; Hossain, M.; Sellami, N. A Comprehensive
Review on The Potential of Green Hydrogen in Empowering the
Low-Carbon Economy: Development Status, Ongoing Trends and
Key Challenges. Green Energy Environ. Technol. 2023, 2 (1), 1−53.
(8) Pafili, A.; Charisiou, N.; Douvartzides, S.; Siakavelas, G.; Wang,
W.; Liu, G.; Papadakis, V.; Goula, M. Recent progress in the steam
reforming of bio-oil for hydrogen production: a review of operating
parameters, catalytic systems and technological innovations. Catalysts
2021, 11 (12), 1526.
(9) Elsapagh, R. M.; Sultan, N. S.; Mohamed, F. A.; Fahmy, H. M.
The role of nanocatalysts in green hydrogen production and water
splitting. Int. J. Hydrogen Energy. 2024, 67, 62−82.
(10) Garlet, T. B.; Savian, F. S.; Ribeiro, J. L. D.; Siluk, J. C. M.
Unlocking Brazil’s green hydrogen potential: Overcoming barriers and
formulating strategies to this promising sector. Int. J. Hydrogen Energy.
2024, 49, 553−570.
(11) AbouSeada, N.; Hatem, T. M. Climate action: Prospects of
green hydrogen in Africa. Energy Rep. 2022, 8, 3873−3890.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.4c10407
ACS Omega 2025, 10, 3282−3303

3296



(12) Maestre, V. M.; Ortiz, A.; Ortiz, I. Decarbonizing the Spanish
transportation sector by 2050: Design and techno-economic assess-
ment of the hydrogen generation and supply chain. Int. J. Hydrogen
Energy. 2023, 48 (99), 39514−39530.
(13) Agaton, C. B.; Batac, K. I. T.; Reyes, M. R., Jr Prospects and
challenges for green hydrogen production and utilization in the
Philippines. Int. J. Hydrogen Energy. 2022, 47 (41), 17859−17870.
(14) Chu, K. H.; Lim, J.; Mang, J. S.; Hwang, M. Evaluation of
strategic directions for supply and demand of green hydrogen in
South Korea. Int. J. Hydrogen Energy. 2022, 47 (3), 1409−1424.
(15) Kumar, S. S.; Lim, H. An overview of water electrolysis
technologies for green hydrogen production. Energy Rep. 2022, 8,
13793−13813.
(16) Irham, A.; Roslan, M. F.; Jern, K. P.; Hannan, M. A.; Mahlia, T.
M. I. Hydrogen energy storage integrated grid: A bibliometric analysis
for sustainable energy production. Int. J. Hydrogen Energy. 2024, 63,
1044−1087.
(17) Nabgan, W.; Nabgan, N.; Jalil, A. A.; Ikram, M.; Hussain, I.;
Bahari, M. B.; Tran, T. V.; Alhassan, M.; Owgi, A. H. K.; Parashuram,
L.; Nordin, A. H.; Medina, F. A bibliometric examination and state-of-
the-art overview of hydrogen generation from photoelectrochemical
water splitting. Int. J. Hydrogen Energy. 2024, 52, 358−380.
(18) Catumba, B. D.; Sales, M. B.; Borges, P. T.; Filho, M. N. R.;
Lopes, A. A. S.; Rios, M. A. S.; Desai, A. S.; Bilal, M.; Santos, J. C. S.
Sustainability and challenges in hydrogen production: An advanced
bibliometric analysis. Int. J. Hydrogen Energy 2023, 48 (22), 7975−
7992.
(19) Sofian, M.; Haq, M. B.; Shehri, D. A.; Rahman, M. M.;
Muhammed, N. S. A review on hydrogen blending in gas network:
Insight into safety, corrosion, embrittlement, coatings and liners, and
bibliometric analysis. Int. J. Hydrogen Energy 2024, 60, 867−889.
(20) Arsad, S. R.; Arsad, A. Z.; Ker, P. J.; Hannan, M. A.; Tang, S. G.
H.; Goh, S. M.; Mahlia, T. M. I. Recent advancement in water
electrolysis for hydrogen production: A comprehensive bibliometric
analysis and technology updates. Int. J. Hydrogen Energy. 2024, 60,
780−801.
(21) Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM
water electrolysis - A review. Sci. Technol. Energy Ma. 2019, 2 (3),
442−454.
(22) Shiva Kumar, S.; Lim, H. An overview of water electrolysis
technologies for green hydrogen production. Energy Rep. 2022, 8,
13793−13813.
(23) Nechache, A.; Hody, S. Alternative and innovative solid oxide
electrolysis cell materials: A short review. Renew. Sustain. Energy Rev.
2021, 149, 111322.
(24) Lokesh, S.; Srivastava, R. Advanced Two-Dimensional
Materials for Green Hydrogen Generation: Strategies toward
Corrosion Resistance Seawater Electrolysis  Review and Future
Perspectives. Energy Fuels. 2022, 36 (22), 13417−13450.
(25) Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W. M.
How to conduct a bibliometric analysis: An overview and guidelines.
J. Bus. Res. 2021, 133, 285−296.
(26) Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for
comprehensive science mapping analysis. J. Informetr. 2017, 11 (4),
959−975.
(27) Khudzari, J. M.; Kurian, J.; Tartakovsky, B.; Raghavan, G. S. V.
Bibliometric analysis of global research trends on microbial fuel cells
using Scopus database. Biochem. Eng. J. 2018, 136, 51−60.
(28) Laengle, S.; Merigó, J. M.; Miranda, J.; S1owinśki, R.; Bomze, I.;
Borgonovo, E.; Dyson, R. G.; Oliveira, J. F.; Teunter, R. Forty years of
the European Journal of Operational Research: A bibliometric
overview. Eur. J. Oper. Res. 2017, 262 (3), 803−816.
(29) Maruoka, N.; Purwanto, H.; Akiyama, T. Exergy Analysis of
Methane Steam Reformer Utilizing Steelmaking Waste Heat. ISIJ. Int.
2010, 50 (9), 1311−1318.
(30) Serrano, D. P.; Coronado, J. M.; de la Peña O’Shea, V. A.;
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(2020) Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet
the 1.5°C Climate Goal; International Renewable Energy Agency: Abu
Dhabi, 2020.
(101) Santoro, C.; Lavacchi, A.; Mustarelli, P.; Di Noto, V.; Elbaz,
L.; Dekel, D. R.; Jaouen, F. What is Next in Anion-Exchange
Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future.
ChemSusChem 2022, 15 (8), No. e202200027.
(102) Ng, W. K.; Wong, W. Y.; Rosli, N. A. H.; Loh, K. S.
Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and
Water Electrolyzer Applications: Performance, Durability, and
Materials Advancement. Separations. 2023, 10 (8), 424.
(103) Li, C.; Baek, J.-B. The promise of hydrogen production from
alkaline anion exchange membrane electrolyzers. Nano Energy. 2021,
87, 106162.

(104) Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y. Correlating the
hydrogen evolution reaction activity in alkaline electrolytes with the
hydrogen binding energy on monometallic surfaces. Energy Environ.
Sci. 2013, 6 (5), 1509−1512.
(105) Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Volcano
plots in hydrogen electrocatalysis - uses and abuses. Beilstein J.
Nanotechnol. 2014, 5, 846−854.
(106) Sapountzi, F. M.; Gracia, J. M.; Weststrate, C. J.; Fredriksson,
H. O. A.; Niemantsverdriet, J. W. Electrocatalysts for the generation
of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci.
2017, 58, 1−35.
(107) Abbasi, R.; Setzler, B. P.; Lin, S.; Wang, J.; Zhao, Y.; Xu, H.;
Pivovar, N.; Tian, B.; Chen, X.; Wu, G.; Yan, Y. A Roadmap to Low-
Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers.
Adv. Mater. 2019, 31 (31), 1805876.
(108) Doan, H.; Kendrick, I.; Blanchard, R.; Jia, Q.; Knecht, E.;
Freeman, A.; Jankins, T.; Bates, M. K.; Mukerjee, S. Functionalized
Embedded Monometallic Nickel Catalysts for Enhanced Hydrogen
Evolution: Performance and Stability. J. Electrochem. Soc. 2021, 168
(8), 084501.
(109) Kundu, B.; Bashar, N.; Nagar, S.; Kumar, S. Chapter 10. The
Role of Transition Metals in Hydrogen Evolution Reactions.
Transition Metal-Based Electrocatalysts: Applications in Green Hydrogen
Production and Storage; Pathak, P.; Singh, L., Eds.; 2013; p 1435.
(110) Xiong, Y.; He, P. A review on electrocatalysis for alkaline
oxygen evolution reaction (OER) by Fe-based catalysts. J. Mater. Sci.
2023, 58 (5), 2041.
(111) Plevová, M.; Hnát, J.; Bouzek, K. Electrocatalysts for the
oxygen evolution reaction in alkaline and neutral media. A
comparative review. J. Power Sources. 2021, 507, 230072.
(112) Zhu, Y.; Liu, T.; Li, L.; Song, S.; Ding, R. Nickel-based
electrodes as catalysts for hydrogen evolution reaction in alkaline
media. Ionics. 2018, 24 (4), 1121−1127.
(113) Raj, I. A. Nickel-based, binary-composite electrocatalysts for
the cathodes in the energy-efficient industrial production of hydrogen
from alkaline-water electrolytic cells. J. Mater. Sci. 1993, 28 (16),
4375−4382.
(114) Raj, I. A.; Vasu, K. I. Transition metal-based cathodes for
hydrogen evolution in alkaline solution: Electrocatalysis on nickel-
based ternary electrolytic codeposits. J. Appl. Electrochem. 1992, 22
(5), 471−477.
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