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A B S T R A C T

This comprehensive review explores the transformative role of remote sensing technologies in the detection and 
monitoring of water pollution. Remote sensing provides dynamic, large-scale, and cost-effective solutions for 
continuous assessment of water quality. The review covers the application of remote sensing for detecting a 
range of pollutants, including chemical contaminants, physical parameters, and biological pollutants. The review 
systematically analyzed 132 studies selected from the Web of Science database using the keywords “remote 
sensing” and “water pollution,” covering publications from the 1990s to December 2023. The analysis highlights 
the use of multispectral and hyperspectral imaging, machine learning algorithms, and statistical models for 
precise pollutant detection and quantification.

Key findings demonstrate the efficacy of remote sensing in providing timely and detailed information on water 
quality, which is essential for environmental monitoring and management. However, several challenges persist, 
including limitations in the spatial and temporal resolution of satellite sensors, the complexity of water body 
optical properties, and the need for advanced data processing algorithms. Future research should address these 
challenges by focusing on enhancing sensor technology, developing sophisticated algorithms for data analysis, 
and integrating remote sensing with in-situ measurements to achieve more comprehensive water quality 
monitoring. This review underscores the significant advancements in remote sensing technologies and their 
crucial role in sustainable water resource management and environmental protection. It emphasizes the need for 
ongoing innovation and interdisciplinary collaboration to further enhance our understanding and management 
of water pollution.

1. Introduction

1.1. The dangers water resources face

Industrialization has played an important role in fostering economic 
growth and promoting urbanisation over generations. However, this has 
contributed to environmental degradation, mostly owing to the emission 

of unfavorable chemical and biological contaminants - in gaseous and 
solid phases - into our soil, air, and water (A. et al., 2018). Environ
mental contamination, caused by natural and anthropogenic activity, 
has become a significant concern in modern-day society (Walczykowski 
et al., 2013).

Water makes up around 70% of the Earth’s surface and 50–95% of 
the mass of all living organisms (A. et al., 2018; Boyd, 2020; Dargaville 
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and Hutmacher, 2022), however it is unevenly available, causing global 
stresses, along with increased consumption and pollution (Boyd, 2020). 
Flooding in some areas, droughts in others, and a constantly increased 
demand for cleaner water results in pollution, limited availability and a 
risk to the ecosystem (Ingrao et al., 2023; Altıok et al., 2023).

1.2. Water pollution

Water pollution is the direct or indirect discharge of contaminants 
into natural water bodies, such as lakes, rivers, oceans, aquifers, reser
voirs and groundwater, without prior proper management, affecting 
ecosystems, such as aquatic organisms and plants (Walczykowski et al., 
2013). There are two main sources of water contamination: (1) Point 
source which is the entry of contaminants from a single, discrete source 
such as a ditch or pipe; and (2) nonpoint distributed contamination. 
Nonpoint source contamination usually is a cumulative outcome of low 
quantities of contaminants from the leaching out of fertilized, and 
pesticide-loaded agricultural lands due to nitrogen and xenobiotic 
compounds or nutrient/phosphate runoff into stormwater ending in 
water bodies (Walczykowski et al., 2013) or sediment, respectively. 
Water-polluting substances can be categorized into four distinct classes 
such as organic pollutants, inorganic pollutants, radioactive pollutants, 
and pathogens. Certain components can have significant detrimental 
effects even when present in very low quantities (J. Singh et al., 2020).

1.3. Types and sources of water pollution

Water pollution can be classified into various types based on the 
nature of pollutants, including chemical, physical, and biological 
pollution. Chemical pollution involves contaminants like heavy metals, 
pesticides, and industrial chemicals. Physical pollution includes changes 
in water temperature, turbidity, and sediment load. Biological pollution 
refers to the presence of harmful microorganisms, such as bacteria and 
viruses. The sources of water pollution are diverse and include industrial 
discharges, agricultural runoff, untreated sewage, and urban storm
water. Identifying and monitoring these sources are crucial for effective 
water management and pollution control.

1.4. Water quality

There are standards for water quality control that have been estab
lished to serve as guides for selecting water supplies for a variety of 
applications and for preserving water bodies from contamination. The 
assessment of water quality is crucial in several sectors, including 
household, agricultural, and industrial water supplies, fisheries and 
aquaculture, leisure, and the overall well-being of ecological systems 
(Boyd, 2020). The characteristics that determine the quality of water are 
classified as biological, physical, and chemical pollutants, and each of 
these categories involves a range of associated parameters (Akhtar et al., 
2021). Bacteria, algae, viruses, and protozoa are examples of biological 
water quality metrics, whereas physical water quality parameters 
include turbidity, temperature, colour, taste, odour, particulates, and 
Electrical Conductivity (EC). The factors indicative of chemical water 
quality include pH levels, inorganic and organic compounds, heavy 
metal concentrations, hardness, dissolved oxygen (DO) levels, 
Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), 
and radioactive substances (Omer, 2019). However, these methods can 
be complicated and sometimes fail to accurately represent water quality. 
Furthermore, these techniques can result in significant costs, be 
labour-intensive, require a considerable amount of time, include addi
tional risks, and may only detect some contaminants present in the 
water. The results of these methods are compared with established 
regulations to estimate and categorize the water quality. However, this 
conventional comparison approach may need to be revised and subjec
tive (Alvizuri-Tintaya et al., 2022). Therefore, it is necessary to advance 
the robustness and reliability of traditional in-situ monitoring of water 

quality, linking physicochemical and biological analysis with remote 
assessment.

The concept of water quality has a long history, spanning over 
hundreds of years. For example, faecal indicator bacteria (FiB) have 
been utilized for over 150 years ago as indicators of water contamina
tion and associated with health risks. This tradition traces back to sig
nificant events in the late 19th century, including John Snow’s 
investigation of the 1854 London cholera outbreak and Robert Koch’s 
discovery of Vibrio cholerae in 1884, originally observed by Filippo 
Pacini in 1854 (Burian et al., 2000; Holcomb and Stewart, 2020; Teaf 
et al., 2018). However, the faecal indicator technique suffers from lim
itations, including inconsistent associations between faecal indicator 
bacteria occurrence, enteric pathogens, as well as being 
time-consuming, costly, and posing health risks (Field and Samadpour, 
2007; Sclar et al., 2016).

Water quality is complex spatiotemporal parameter. Water quality 
differences are also dependent on the intended purpose of the water. 
While the fundamental regulations associated with this issue cover the 
quality standards for drinking water, irrigation water, and wastewater 
disposal, it is also feasible to establish a distinct quality standard tailored 
to the specific requirements. While water quality standards are labori
ously monitored using the stated parameters, additionally, desired water 
quality can be accomplished with the assistance of suitable treatment 
techniques when it is required (Omer, 2019). Furthermore, measuring 
water quality of wastewater to identify its pollutants is crucial for 
choosing the most appropriate wastewater treatment method.

1.5. Optical mechanisms of water pollution

Understanding the optical mechanisms of water pollution is essential 
for remote sensing applications. Pollutants can alter the optical prop
erties of water by changing its color, turbidity, and reflectance charac
teristics. For instance, dissolved organic matter and chlorophyll can 
absorb specific wavelengths of light, while suspended sediments can 
scatter light. Remote sensing technologies utilize these changes in op
tical properties to detect and quantify various pollutants in water bodies. 
Advanced sensors can capture data across multiple spectral bands, 
enabling detailed analysis of water quality parameters.

1.6. Remote sensing for water quality detection and monitoring

Remote sensing technologies, along with Geographic Information 
Systems (GIS), offer enormous potential for detecting events in nature. 
Among these are detection and monitoring of water body condition, 
quality and contamination level (Walczykowski et al., 2013). Since the 
successful launch of Landsat-1 in 1972, remote sensing technologies 
have revolutionized water quality monitoring by leveraging the spectral, 
spatial, and temporal properties of light reflected from water bodies (S. 
K. Singh et al., 2015). These technologies use a variety of sensors 
mounted on satellites and aircraft to measure radiation across different 
wavelengths, enabling the detection of chemical, biological, and phys
ical pollutants in water (Cantini et al., 2019).

Remote monitoring of water resources enables dynamic observation, 
is endorsed with high adaptability and efficiency and can include big 
volumes of data (Zang et al., 2012) while being cost and time-effective. 
Therefore, as remote sensing technologies evolve (Ardila et al., 2022; 
Buriti, 2022), their application in water pollution monitoring promises 
to become more refined, offering comprehensive and dynamic insights 
into water quality (Sagan et al., 2020). The integration of remote sensing 
with traditional water quality monitoring methods can enhance the 
accuracy and comprehensiveness of water pollution assessments.

Therefore, this review aims to describe the transformative role of 
remote sensing technologies in detecting and analyzing water pollution 
through specific pollutant detection and monitoring, marking a pivotal 
shift in how environmental data are collected and interpreted. 
Furthermore, the current gaps and challenges are discussed pointing 
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towards future directions.

2. Methods

Web of Science database (WOS) has been employed for the purposes 
of this study. We have noticed a big difference in the number of papers 
on Water quality – 731 articles (27 review articles) – and Water pollu
tion. Exploring the WOS database using the keywords “remote sensing” 
and “water pollution” revealed a collection of 120 papers starting from 
the 1990s to December 2023 (Fig. 1). This disproportion suggests a 
higher focus on broader aspects of water quality, with comparatively 
less attention dedicated to the challenges and methodologies specific to 
detecting and analyzing water pollution (see Fig. 2).

Thus, the central objective of this paper is to gather most of the 
knowledge on remote sensing applications in detecting specific pol
lutants within water environments to assess water quality. The inves
tigative process was structured and embraced a dual-phase assessment 
methodology.

Initially, each paper underwent a preliminary screening to assess its 
relevance to the targeted theme. This phase allowed for a quick elimi
nation of studies that did not align with the primary focus. Following 
this, we conducted a more comprehensive review. The comprehensive 
review involved systematically noting critical elements, including the 
types of pollutants, specific remote sensing instruments, sensor specifi
cations, geographical contexts of the studies, diverse water body clas
sifications under investigation, temporal and spatial resolution of data 
collection, methodologies used for data analysis, calibration and vali
dation techniques, sources of ancillary data (e.g., meteorological, hy
drological), statistical methods applied, outcomes and key findings, 
limitations and challenges identified in the studies, and recommenda
tions for future research.

During this extensive review, a notable trend emerged, with several 
studies specifically addressing pollutants around mining areas. Recog
nizing the significance of this subtheme, we did additional research 
using the keywords “remote sensing,” “mine,” and “water pollution,” 
resulting in additional studies in the literature review.

Out of the 132 studies examined, we found 67 of them to be directly 
related to the investigated topic, providing substantial insights into 
remote sensing applications for water pollutant detection and, subse
quently, the assessment of water quality. An additional 13 studies, while 
not directly related, held relevance and were retained for further read
ings. The remaining studies, which were not aligned with the primary 

focus, predominantly addressed general water quality parameters (such 
as temperature, pH, turbidity) rather than specific water pollutants 
(like heavy metals, nitrates, phosphates). One of the related studies 
offered a short review of remote sensing technologies in water moni
toring, where twelve scientific studies were reviewed. However, all of 
the mentioned studies were published in Chinese and therefore not 
included in this review (Liu, 2023).

We have grouped the results into three sections, chemical, physical, 
and biological, and complex matrix water pollutants.

3. Results

3.1. Remote sensing and chemical water pollutants

Chemical water pollutants, predominantly emitted into natural 
water bodies through anthropogenic activities, include substances such 
as nitrogen compounds and nutrients from agriculture, heavy metals 
from mining, acids from manufacturing, and chlorinated organic com
pounds from sewage systems and industrial activities (Walczykowski 
et al., 2013). Additional pollutants include oils, fats, hydrocarbons from 
wastewater effluents, oil spills, pesticides and herbicides like glypho
sate, atrazine, and chlorpyrifos (Choudri et al., 2020; Geissen et al., 
2015; Mahmood et al., 2016; Rashid et al., 2010; Sousa et al., 2018). 
Monitoring these pollutants involves measuring parameters such as pH, 
inorganic and organic compounds, heavy metal concentrations, water 
hardness, DO levels, BOD, chemical oxygen COD, and radioactive sub
stances (Omer, 2019).

Chemical pollutants, such as heavy metals, nutrients, and industrial 
chemicals, typically affect the water’s optical properties by absorbing 
specific wavelengths of light. For instance, dissolved organic matter and 
chlorophyll absorb light in the ultraviolet and visible spectra, respec
tively. These absorptive characteristics lead to changes in the water’s 
color and decrease its clarity.

Chemical pollutants can alter the overall spectral signature of water 
bodies. The presence of these chemicals can be detected through remote 
sensing by identifying specific absorption features in the spectral data. 
Chemical changes often result in color changes in the water, which are 
detectable with multispectral and hyperspectral imaging techniques.

Several studies have utilized remote sensing to investigate these 
chemical pollutants. For instance, El-Zeiny et al. (2019) used Landsat 
imagery to assess water quality in Qaroun Lake, Egypt, measuring pH, 
EC, turbidity, ammonia, nitrate, phosphate, organic matter, and heavy 

Fig. 1. Number of publications per year within the WOS database using the keywords “remote sensing” and “water pollution.”
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metals like Pb, Cd, Ni, and Cr. Correlating 24 water samples with 
Landsat data, the study found Pb and Ni levels exceeding EPA limits and 
toxic ammonia levels. Similarly, Fouladi Osgouei et al. (2022) used 
Sentinel-2 imagery and Artificial Neural Networks (ANN) to model 
water quality in the Aras River, focusing on sodium (Na+), magnesium 
(Mg2+), chloride (Cl− ), sulphate (SO42− ), calcium (Ca2+) ions, and 
EC. The results highlighted significant pollution from the Armenian 
tailing dam, corroborating findings from the World Bank.

In another study, González-Márquez et al. (2023) also used Landsat-8 
multispectral images to model nitrate concentrations in Playa Colorada 
Bay, Mexico. By correlating nitrate with optically active parameters 
from visible and infrared spectra, the study provided a spatio-temporal 
understanding of nitrate dynamics, revealing concentrations exceeding 
recommended values for marine life protection according to Mexican 
pollution control criteria. Do et al. (2023) investigated water pollution 
in Hanoi, Vietnam, using machine learning with Sentinel-2A and 
Sentinel-1A data to estimate Total Suspended Sediments (TSS), COD, 
and BOD, demonstrating high predictive accuracy.

Studies by Shukla et al. (2020) and Alparslan et al. (2009) examined 
the intersection of land use changes and water quality. Shukla et al. used 
IRS 1C and Landsat 7 imagery to assess water quality in the Upper Bhima 
river subbasins, measuring parameters like hardness, Total Dissolved 
Solids (TDS), BOD, chlorides, pH, color, and turbidity. Alparslan et al. 
used satellite imagery to map water quality in Turkey, investigating 

chlorophyll a (Chl-a), total phosphorus (TP), total nitrogen (TN), 
turbidity, BOD, and COD. Similarly, Zeng et al. (2009) studied TN and 
TP levels in a Chinese lake using Landsat-5 and SPOT-5 imagery, high
lighting the negative impact of land use on water quality.

Pollution risk in the Hebei Yuecheng Reservoir, China, has been 
assessed using a dual NPS model with remote sensing and GIS data to 
understand phosphorus pollution from different land uses (S. Wang 
et al., 2014). On the other hand, Liang et al. (2016) developed a tech
nique using remote sensing to measure cadmium (Cd) content in water 
by analyzing the extinction coefficient and reflectance spectra of Cd 
compounds.

The effects of pollutants like colza oil, crude oil, and gas oil on radar 
cross-sections of seawater surfaces have been investigated in a 
controlled environment, concluding that all pollutants reduced the radar 
cross-section compared to clean seawater (Mainvis et al., 2018). Chen 
et al. (2012) used a spectrometer to measure remote sensing reflectance 
and develop algorithms for estimating heavy metal concentrations (Cu, 
Pb, Zn) in a Chinese river (Chen et al., 2010) (Fig. 3).

Additional studies have investigated heavy metal pollutants in 
broader contexts. Jiji et al. (2020) analyzed 17 heavy metal pollutants in 
Tiruppur District, India, using Landsat data and ICP-OES measurements. 
Trivero et al. (2013) investigated eight heavy metals in an Italian river 
using QuickBird 2 imagery, highlighting temporal changes in pollution 
levels. Other studies have used satellite imagery to investigate water 

Fig. 2. Keywords network visualization (each colour denotes a distinct group of keywords that frequently appear together in the literature). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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pollution in general contexts, employing indices like the Normalized 
Difference Water Index (NDWI) to classify pollution levels 
(Alvizuri-Tintaya et al., 2022), or to support ex-situ findings (Arentsen 
et al., 2004).

3.2. Remote sensing and physical water pollutants

Physical pollutants, such as suspended sediments, turbidity, and 
temperature changes, primarily affect the scattering properties of water. 

Suspended particles increase the scattering of light, which can make the 
water appear murkier and affect its transparency. Temperature changes 
can alter the refractive index of water, influencing how light propagates 
through it. Although not inherently toxic, excessive levels can have 
harmful effects on aquatic ecosystems. These pollutants include sedi
ment loads from intensive land use, and discarded garbage, such as 
plastic bottles, bags, rubber, masks, gloves, and wood. Physical pollut
ants are the most visible among water pollutants and significantly 
impact aquatic flora and fauna (Walczykowski et al., 2013).

Fig. 3. Heavy metals distribution (Zn, Pb and Cu, left to right) (Chen et al., 2010).

Table 1 
Chemical, physical and biological pollutants and parameters investigated with remote sensing.

No Analysis Parameters and pollutants investigated Study area RS sensor Water body type Reference

1 Chemical: Pb, Cd, Ni, Cr, NH₃., NO₃⁻, PO₄3⁻, OM Egypt Landsat lake El-Zeiny et al. (2019)
Physical: EC, turbidity, TSS

2 Chemical: Na+, Mg2+, CI− , SO4
2− , Ca2+ Iran Sentinel-2 river Fouladi Osgouei et al. 

(2022)Physical: EC
3 Chemical: NO3–N Mexico Landsat-8 coast González-Márquez et al. 

(2023)
4 Chemical: COD, BOD Vietnam Sentinel-1/2 river Do et al. (2023)

Physical: TSS
5 Chemical: Hardness, Chlorides, BOD, pH India 1C Linear imaging Self Scanner 

III, Landsat 7
river Shukla et al. (2020)

Physical: TDS, Color, and Turbidity
6 Chemical: TN, COD, BOD, TP Turkey Landsat-5 TM + SPOT-Pan, IRS- 

1C/D
lake Alparslan et al. (2009)

Physical: Turbidity
Biological: Chl-a

7 Chemical: TN, TP China Landsat-5, SPOT-5 lake Zeng et al. (2009)
8 Chemical: P China NPS model with RS and GIS lake (S. Wang et al., 2014)
9 Chemical: CdS, CdO lab ASD lab Liang et al. (2016)
10 Chemical: Colza, crude, gas oil pool radar pool Mainvis et al. (2018)
11 Chemical: Cu, Pb, Zn China spectrometer river (Chen et al., 2010, 2012)
12 Chemical: As, Cd, Cr, Cu, Fe, Pb, Ni, Zn, Al, Co, Mg, Be, B, Li, 

Mo, Se, V and Hg
India Landsat water bodies in a broad 

area
Jiji et al. (2020)

13 Chemical: Cr, Ni, Cu, Zn, As, Cd, Hg, Pb Italy QuickBird 2 river Trivero et al. (2013)
14 Chemical: B, Cu, Pb, Zn,TP, TN, orthophosphate, oil and 

grease
Utah Landsat 7 stormwater runoff 

events
Arentsen et al. (2004)

Physical: TSS, turbidity
Biological: Fecal coliforms

15 Chemical: As, Cd, Fe, Zn, Mn, Ni, and Al, pH, DO Bolivia Sentinel-2 central water bodies Alvizuri-Tintaya et al. 
(2022)Physical: Turbidity, conductivity

16 Physical: TSS China MODIS-Aqua, lake (M. Wang et al., 2013)
17 Physical: Sediment and thermal pollution China UAV water bodies of SW 

China
Zang et al. (2012)

Chemical: oil spills and red tide
18 Physical: Suspended matter Russia Sentinel MSI S2, MODIS coastal zone Shul’ga et al. (2022)
19 Physical: Turbidity and suspended sediments, 

transparency
New 
Zealand

Landsat, ERS satellite bay Lounis et al. (2006)

Biological: Chl-a
20 Biological: Microbial contamination Canada various beaches Kotchi et al. (2015)
21 Biological: Chl-a China MODIS lake (Li et al., 2019a)
22 Biological: algal blooms China MODIS lake (M. Zhang et al., 2014)
23 Biological: Chl-a, phytoplankton biomass Russia Various (MODIS?) lake Gbagir and Colpaert 

(2020)
24 Biological E. coli India LISS III sensor groundwater bodies in 

an area
Dandge and Patil (2022)

Chemical: pH, K, NO₃⁻, SO₄2⁻, Cl⁻, F⁻, TA, and TH
Physical: Turbidity, TDS, EC
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The presence of physical pollutants can also be detected through 
remote sensing by examining changes in the water’s reflectance pat
terns. For example, high turbidity levels cause increased backscattering 
of light, which can be measured by remote sensors. Both chemical and 
physical pollutants contribute to the overall optical complexity of water 
bodies, and advanced remote sensing techniques can be used to differ
entiate and quantify these pollutants by analyzing their unique spectral 
and scattering signatures.

3.2.1. Detection and monitoring methods
Wang et al. (2013) demonstrated this in their study on Lake Taihu in 

China, using MODIS-Aqua measurements to emphasize the significance 
of Shortwave Infrared (SWIR) bands in detecting TSS and improving 
atmospheric correction algorithms for water colour products. Similarly, 
El-Zeiny et al. (2019) investigated Qaroun Lake in Egypt, revealing the 
impacts of untreated pollutants, including turbidity and TSS, alongside 
various chemical pollutants, using Landsat and Sentinel-2 imagery. 
Their findings highlighted the urgent need for measures to mitigate 
contamination levels and safeguard water quality.

Do et al. (2023) also studied TSS in combination with BOD and COD, 
highlighting the ability of remote sensing to monitor both physical and 
chemical pollutants concurrently. This integrated approach is further 
supported by studies that evaluate chemical and physical pollutants 
together, sometimes including biological parameters for a comprehen
sive understanding of water pollution (Table 1).

The flexibility of remote sensing is showcased by Zang et al. (2012), 
who used Unmanned Aerial Vehicle (UAV) imagery to investigate 
small-scale water pollution in Southwest China. They focused on sedi
ment and thermal pollution, oil spills, and red tide, demonstrating how 
high-resolution UAV imagery can enhance pollution monitoring accu
racy and efficiency.

Shul’ga et al. (2022) examined suspended matter in coastal waters 
near Crimea, identifying both natural and anthropogenic sources of 
suspended matter. Their approach to mapping suspended matter dy
namics offers crucial insights for environmental monitoring, particularly 
in coastal regions where hydrometeorological factors influence 
pollutant distribution.

Lounis et al. (2006) studied water quality in Algiers’s Bay, focusing 
on physical pollutants such as turbidity, suspended sediment concen
tration (SSC), and water transparency, using Secchi Disk Depth (SDD) 
measurements alongside Chl-a concentration, a biological parameter. 
They integrated Landsat and ERS satellite imagery with in-situ mea
surements and neural network modelling to construct Pollution Signa
ture Draw (PSD) and map key water quality parameters across the bay.

3.2.2. Remote sensing and mine tailings
Mine tailings, comprising waste materials from mining operations, 

are stored in containment structures called tailings dams. These tailings 
can contain hazardous substances like heavy metals and chemicals. 
However, failures in these containment structures can lead to tailings 
spills, releasing contaminated water and sediment into the environment. 
These spills pose significant environmental risks, including water 

pollution and habitat destruction. Remote sensing technologies play a 
crucial role in monitoring tailings storage facilities and detecting po
tential risks of spills. By providing detailed spatial and temporal infor
mation, remote sensing helps assess the integrity of tailings dams and 
identify areas that are prone to failure. Moreover, remote sensing fa
cilitates rapid response and assessment during a spill, enabling effective 
mitigation measures to minimize environmental damage. Therefore, 
remote sensing data can be used for long-term reclamation and reha
bilitation monitoring and effective environmental management of 
mining areas (Charou et al., 2010).

Several studies have investigated the use of remote sensing to 
monitor chemical pollutants released from mining activities (Table 2). 
Tesfamichael and Ndlovu (2018) utilized middle-resolution satellite 
imagery to investigate concentrations of various chemical constituents 
(major anions, cations, trace elements) in water areas affected by 
abandoned gold mines. Their results highlight the potential of moderate 
spatial resolution remote sensing for quantifying hydrochemical prop
erties in mining environments and advocate for further studies with 
larger sample sizes to enhance accuracy and reliability.

Karan and Samadder (2016) used remote sensing and GIS technol
ogies to assess the environmental impact of coal mining activities, 
focusing on surface and groundwater quality. They introduced a novel 
Risk Potential Index (RPI) model, which integrates remote sensing data 
from sources like Landsat and MODIS to forecast surface water 
contamination due to coal mining. The RPI model, based on the Sour
ce/Vector/Target framework, considers factors such as the proximity of 
mining activities to surface watercourses, transportation pathways of 
contaminants, and areas at risk of pollution. Their study identifies crit
ical areas susceptible to contamination, aiding decision-making for 
pollution mitigation strategies.

Charou et al. (2010) utilized multi-temporal imagery from 
Landsat-5, Landsat-7, SPOT Panchromatic, and ASTER satellites to 
assess the impact of mining activities on land and water resources. By 
synergistically using remote sensing and GIS, they created a compre
hensive database for storing, processing, and retrieving environmental 
data, essential for environmental impact assessment and monitoring in 
mining areas even after mining activities have ceased.

Crioni et al. (2023) focused on monitoring river turbidity following a 
mine tailing dam failure using Sentinel-2 imagery. Their research 
developed an empirical model based on satellite-derived data to predict 
turbidity levels, showing a strong correlation between turbidity and 
near-infrared band (NIR) data from Sentinel-2 imagery. This study 
highlights the efficacy of remote sensing in assessing the spatiotemporal 
dynamics of river turbidity, particularly after industrial accidents like 
mine tailing dam failures.

Ruppen et al. (2023) also used Sentinel-2 to evaluate the impacts of 
tailings spills on water quality following the Catoca mine tailings spill in 
Angola. By analyzing satellite imagery, the study tracked the pollution 
plume resulting from the tailings spill over considerable distances, 
providing insights into the spatiotemporal dynamics of the pollution 
event (Fig. 4). Similarly, Pyankov et al. (2021) used Sentinel-2 for water 
pollution monitoring near abandoned mines, correlating high levels of 

Table 2 
Physicochemical analysis combined with remote sensing for mine tailings detection and monitoring.

No Mine type Analysis Parameters and pollutants 
investigated

Study 
area

RS sensor Water body type Reference

1 Gold Chemical: 
Physical:

- several
- EC

Africa/ 
India

Landsat, Aster open pit/surface and 
goundwater

(Tesfamichael and Ndlovu, 2018; 
Karan and Samadder, 2016)

2 Diamond Physical: Turbidity, TSS Angola Sentinel-2 river Ruppen et al. (2023)
3 Iron ore Physical: Turbidity Brazil Sentinel-2 river Crioni et al. (2023)
4 Mainly 

lignite
Physical: Temperature Greece Landsat, SPOT 

Panchromatic, and ASTER
one lake and two land 
areas

(Charou et al., 2010),

5 Coal Chemical: pH, sulphate, NO3–N, total 
hardness, Pb, As

India Landsat and MODIS surface and 
goundwater bodies

Karan and Samadder (2016)

6 Coal Chemical: Fe Russia Sentinel-2 river Pyankov et al. (2021)
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iron (Fe) contamination with changes in water colour to a ’rusty’ shade 
in the Kizel coal basin, highlighting the severe impact of acid mine 
drainage (see Fig. 5).

3.2.3. Remote sensing and oil spills in water bodies
Our systematic search identified limited studies on oil spills in water 

bodies using remote sensing. However, broader literature extensively 
covers remote sensing applications for oil spill detection and moni
toring, providing valuable insights into methodologies and advance
ments in this field (Fingas and Brown, 2014; Vasconcelos et al., 2023).

3.2.3.1. Radar satellite imagery studies. Gade and Alpers (1999) used 
Synthetic Aperture Radar (SAR) imagery from the European Remote 
Sensing Satellite ERS-2 to monitor oil spills in European coastal waters, 
analyzing over 660 SAR images. They identified oil spills ranging from 
0.1 km2 to over 56 km2, with a higher detection frequency during 
morning satellite passes due to oil pollution occurring predominantly at 
night. Seasonal variations, such as increased wind speeds in winter, 
affected the visibility of oil on SAR images.

Liao et al. (2023) combined Polarimetric Synthetic Aperture Radar 
(PolSAR) images with deep learning to monitor oil spills. Using a se
mantic segmentation model based on DeepLabv3+ and trained with 
Sentinel-1 images, they detected oil films on the sea surface, showing a 
decrease in oil spill frequency in Jiaozhou Bay, China, from 2017 to 
2019, indicating effective marine management.

Mainvis et al. (2018) analyzed the effects of oil slicks on radar 
backscattering from sea surfaces, using the first-order small slope 
approximation (SSA1) model to differentiate between contaminated and 
clean sea surfaces. Their statistical approach improved oil spill detection 
capabilities, crucial for environmental monitoring and response.

3.2.3.2. Field experiments and reflectance studies. Haule et al. (2021)
conducted a field experiment in the Baltic Sea to assess dispersed oil’s 

impact on remote sensing reflectance. Their findings highlighted the 
challenges of detecting dispersed oil forms and emphasized the sensi
tivity of upwelling radiance to subtle changes in oil pollution levels.

Viallefont-Robinet et al. (2019) conducted a controlled experiment, 
releasing a mineral oil emulsion into the sea to enhance satellite remote 
sensing methodologies. Using dual-frequency radar sensors, they 
developed an operational workflow integrating radar and optical 
branches for detecting, characterizing, and quantifying oil slicks, 
providing insights for effective intervention strategies.

3.3. Remote sensing and biological and complex matrix water pollutants

Biological water pollutants, including pathogenic microorganisms 
(e.g., E. coli) (Wu et al., 2021), protozoa, viruses, algae (e.g., algal 
blooms, cyanobacteria, and phytoplankton), pose significant ecological 
and environmental challenges to humans and aquatic ecosystems 
(Amorim and Moura, 2021). These pollutants can proliferate due to 
elevated nutrient concentrations from agricultural activities, leading to 
eutrophication. Microorganisms can enter water through rainfall car
rying dust or from soil polluted by animal and human waste. Raw 
sewage is a common contaminant source (Walczykowski et al., 2013).

Remote sensing technologies offer valuable tools for monitoring and 
understanding the dynamics of these pollutants over large spatial scales 
and extended periods. Studies have demonstrated the effectiveness of 
remote sensing in detecting and quantifying biological pollutants, 
providing critical insights into their distribution, extent, and ecological 
impacts.

Kotchi et al. (2015) investigated microbial contamination of recre
ational waters in southern Quebec, Canada, using various EO images 
from satellites like WorldView-2, GeoEye-1, SPOT-5/HRG, Land
sat-5/TM, Envisat/MERIS, Terra/MODIS, NOAA/AVHRR, and 
Radarsat-2. The study employed supervised classification and logistic 
regression models to link faecal contamination levels with 

Fig. 4. High resolution images of rivers and sediments contaminated by acidic mine water in the Kizel coal basin (left – Kos’va; right – South Vil’va; modifed from 
(Pyankov et al., 2021).

Fig. 5. OI parameter computed with SETHI (the ONERA airborne sensor dedicated to the exploration of scientific applications of remote sensing) X-band SAR data 
(modified from Viallefont-Robinet et al., 2019).
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environmental determinants derived from satellite images, aiming to 
understand the complex relationships between satellite-derived envi
ronmental data and microbial contamination risks.

Li et al. (2019) and Zhang et al. (2014) focused on estimating Chl-a 
concentrations and monitoring algal blooms in Taihu Lake, China, using 
MODIS imagery. Li et al. developed a classification-based algorithm to 
improve Chl-a estimation in turbid and eutrophic waters, while Zhang 
et al. tracked algal bloom development over time, providing valuable 
insights for managing their ecological impacts.

Gbagir and Colpaert (2020) analyzed water quality and ecological 
status in Lake Ladoga, Russia, using remote sensing data to monitor 
phytoplankton biomass and Chl-a concentrations, contributing to un
derstanding the lake’s ecological health and biological pollutant 
impacts.

Dandge and Patil (2022) assessed groundwater quality in the Bho
kardan area of India using toposheets, and LISS III sensor imagery. They 
identified E. coli as the primary biological pollutant, followed by 
turbidity, providing insights into water resources quality for drinking 
purposes.

3.3.1. Complex matrix pollutants in water bodies
Klemas (2012) highlighted the role of remote sensing in monitoring 

coastal plumes, using sensors like multispectral and hyperspectral im
agers and thermal infrared radiometers. These tools track coastal plumes 
by detecting differences in colour, turbidity, salinity, or temperature, 
explaining how plumes accumulate biological and physicochemical 
materials, including pollutants.

Wu et al. (2021) utilized high-resolution remote sensing imagery 
from the Chinese satellite Gaofen-2 (GF-2) to detect urban black-odour 
water (BOW), a result of pollutant discharge and water stagnation. 
Their method achieved an 85.7% accuracy rate in detecting BOW, 
demonstrating the practical application of remote sensing for managing 
urban water pollution.

Shao-Meng et al. (2003) used remote sensing to monitor water 
pollution from urban and rural waste discharges into Dianchi Lake, 
China, employing pixel unmixing techniques to enhance monitoring 
accuracy in this severely polluted and eutrophic lake. Similarly, Cai et al. 
(2023) used UAV hyperspectral data to identify urban water pollution 
sources, analyzing fluorescent components and spectral indices from 
dissolved organic matter in polluted water samples. Their method ach
ieved over 70% recognition accuracy for different pollution sources, 
demonstrating UAVs’ potential in environmental monitoring.

Industrial sewage outfalls have been monitored using combined web 
crawler technology and remote sensing to monitor in the Luan River 
Basin Zhang et al. (2021). By integrating internet-sourced industrial 
data with remote sensing images, they accurately identified sewage 
outfall locations and modelled sewage inflow distribution, achieving an 
89% accuracy rate.

Bondur et al. (2020) monitored deep wastewater outfalls in the Black 
Sea, using spectral indices to identify the rupture location, discharge 
amount, and temporal changes, demonstrating remote sensing’s capa
bility to track industrial wastewater pollution.

The ecological status of the Mokra Sura river in Ukraine (Kharytonov 
et al., 2019) and monitoring algal blooms and hydrocarbon pollution 
from an oil spill (Laneve et al., 2022) have been done using Sentinel-2 
data, integrating environmental water quality indices with satellite 
data to track pollutants like sulphate, magnesium, zinc, chromium, and 
oil contaminants.

UAV-mounted hyperspectral was also used to evaluate water quality 
indicators in Suzhou City, China, optimizing models with a differential 
evolution algorithm Zhang et al. (2022).

4. Discussion-challenges, gaps of knowledge and future 
directions

Remote sensing technologies have revolutionized the monitoring 

and analysis of water pollution, offering comprehensive insights across 
physical, chemical, and optical dimensions. By leveraging advanced 
sensors and integrating multisensor data, remote sensing has enabled 
the detection and quantification of various pollutants with greater ac
curacy and efficiency. The integration of remote sensing data with 
advanced processing techniques such as machine learning and spectral 
analysis further enhances our capability to monitor water pollutants. For 
instance, machine learning models applied to satellite data have 
improved predictions of Chl-a levels, providing insights into algal bloom 
dynamics and their environmental impacts (Binding et al., 2018). 
Similarly, advanced algorithms and models are essential for accurately 
interpreting complex optical signals from various water bodies (Cai 
et al., 2023).

This section discusses the current state and future prospects of 
remote sensing in water pollution monitoring, focusing on physical, 
chemical, optical, detection aspects, and accuracy validation.

4.1. Chemical aspects of water pollution monitoring

The detection of chemical pollutants, such as heavy metals, nutri
ents, and industrial chemicals, has been effectively conducted using 
hyperspectral imaging and specific spectral bands that capture unique 
absorption features (El-Zeiny et al., 2019; Chen et al., 2012). Remote 
sensing has proven particularly instrumental in detecting chemical 
pollutants, which often originate from industrial discharges and agri
cultural runoff. Sentinel-2 satellites, part of the European Copernicus 
program, have been invaluable in detecting chemical pollutants, 
combining high spatial resolution with increased spectral and temporal 
resolution necessary for comprehensive water resources remote sensing 
(Laneve et al., 2022). Multispectral and hyperspectral imaging, which 
involve capturing data across broad and narrow wavelength bands 
respectively, play crucial roles in effectively monitoring these pollut
ants. For instance, hyperspectral imaging has enabled detailed mapping 
of heavy metals like Pb and Cd in aquatic environments by dis
tinguishing their unique spectral signatures. The development of new 
spectral indices and machine learning algorithms will enhance the 
detection capabilities of chemical pollutants. Establishing long-term 
remote sensing programs will help in understanding the temporal dy
namics of chemical pollution and its long-term impacts on water quality.

4.2. Physical aspects of water pollution monitoring

Monitoring physical pollutants such as suspended sediments and 
turbidity demonstrates the importance of remote sensing technologies in 
water quality assessment. Remote sensing technologies, such as MODIS 
and Sentinel-2, have been effective in mapping turbidity levels across 
large water bodies. Thermal sensors on satellites like Landsat and 
MODIS are used to detect temperature variations in water bodies, which 
can indicate thermal pollution and its effects on aquatic life. The ca
pacity to monitor these parameters over large areas and frequent tem
poral updates provides a powerful tool for environmental engineers, 
managers, and policymakers (D. Zhang et al., 2022). Future remote 
sensing missions should aim to provide higher spatial resolution to 
better capture localized physical pollution events. Combining remote 
sensing data with ground-based measurements will improve the accu
racy and reliability of physical pollution monitoring.

On the other hand, UAV imagery, offering significantly higher res
olution than satellites and piloted aircraft, has also been noted for 
monitoring water quality in smaller-scale water bodies. UAVs are cost- 
effective, flexible in flight path planning, and can capture high- 
resolution data close to the target, making them ideal for detailed 
pollution monitoring (Zang et al., 2012). However, their limited spatial 
scale of observation requires frequent flights to ensure comprehensive 
data acquisition.
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4.3. Biological aspects of water pollution monitoring

Remote sensing of biological pollutants, particularly algal blooms, 
represents a vital application of these technologies. Algal blooms can 
severely degrade water quality and harm aquatic life and human health. 
Reflectance data gathered via satellite or aerial imagery provides a 
comprehensive view of water bodies, enabling the detection of Chl-a 
concentrations, a key indicator of algal biomass and eutrophication 
potential (Li et al., 2019). The integration of remote sensing data with 
in-situ biological sampling has improved the understanding of the 
spatial and temporal distribution of biological pollutants. Advances in 
sensor technology and data processing techniques continue to enhance 
our ability to monitor and manage algal blooms and related biological 
pollutants (Zimba and Gitelson, 2006). Future research should focus on 
enhancing the resolution and sensitivity of remote sensing technologies 
to detect a wider range of biological pollutants and integrating these 
technologies with automated in-situ sensors for real-time monitoring.

4.4. Accuracy validation of remote sensing in water quality monitoring

Accuracy validation is crucial for ensuring the reliability of remote 
sensing technologies in monitoring water quality indicators. Various 
methods have been employed to validate the accuracy of remote sensing 
data, including the comparison of satellite-derived measurements with 
in-situ observations. For example, Wang et al. (2013) demonstrated the 
use of MODIS-Aqua measurements to detect TSS in Lake Taihu, China, 
and validated their results with ground-based data, achieving a corre
lation coefficient of 0.89. Similarly, El-Zeiny et al. (2019) validated their 
findings on nutrient runoff in Qaroun Lake, Egypt, using in-situ mea
surements, reporting a high level of agreement with an R2 value of 0.91.

Statistical methods, such as root mean square error (RMSE) and 
mean absolute error (MAE), are commonly used to quantify the accuracy 
of remote sensing models. For instance, Do et al. (2023) used these 
metrics to validate their remote sensing model for monitoring TSS, BOD, 
and COD, achieving RMSE values of less than 10%. Furthermore, inte
grating remote sensing data with machine learning algorithms has 
improved the accuracy of pollutant detection. Studies by Zang et al. 
(2012) and Shul’ga et al. (2022) have shown that using neural networks 
and other advanced algorithms can enhance the precision of remote 
sensing data, with validation results indicating significant improve
ments in model performance.

4.5. Optical aspects of water pollution monitoring

Understanding the optical properties of water affected by various 
pollutants is fundamental for remote sensing. Pollutants can alter the 
absorption and scattering of light, which is detectable through multi
spectral and hyperspectral sensors (Cantini et al., 2019). Remote sensing 
has been used to monitor changes in water color due to pollutants like 
dissolved organic matter and chlorophyll (Pyankov et al., 2021). 
Developing more sophisticated algorithms to differentiate between 
various optical signatures of pollutants will improve the accuracy of 
remote sensing data interpretation. Collaboration between optical sci
entists and remote sensing experts will lead to better models and tools 
for monitoring water quality.

4.6. Challenges and future directions

Despite these advancements, challenges persist in applying remote 
sensing for water pollution monitoring. Current satellite sensor limita
tions in spatial and temporal resolution can hinder the detection of 
localized or ephemeral pollution events. Moreover, the complexity of 
water body optical and physical properties necessitates sophisticated 
models to accurately interpret remote sensing data, requiring ongoing 
refinement of algorithms and models. The integration of remote sensing 
data with in-situ measurements can improve the accuracy and reliability 

of water pollution assessments. On-site measurements, including water 
quality indices that combine physical, chemical, and biological param
eters, should be integrated into remote sensing technologies for 
comprehensive detection and monitoring (Dandge and Patil, 2022; 
Dandge and Patil, 2022).

The concept of "living" sensors, such as those based on Bio
electrochemical Systems (BES), offers an exciting complement to remote 
sensing technologies. BES devices use live microbial communities to 
convert biochemical energy from organic matter into electricity, 
responding sensitively to environmental perturbations. These biosensors 
can enhance the detection of environmental events, providing real-time 
data that complements satellite observations like those from Sentinel-2. 
Integrating BES with remote sensing could significantly improve the 
accuracy and responsiveness of water quality monitoring systems, of
fering a new dimension to biomarking and biological parameter 
monitoring.

By providing timely and detailed information on pollutant distribu
tions, remote sensing tools enable targeted interventions and support 
sustainable management of water resources. Collaborations across dis
ciplines—such as modellers, environmental scientists, and remote 
sensing specialists—will be crucial in leveraging the full potential of 
remote sensing for water pollution monitoring. Future research should 
focus on enhancing the spectral, spatial, and temporal resolution of 
remote sensing data, developing more sophisticated data processing 
algorithms, and integrating remote sensing with in-situ measurements 
for a comprehensive understanding of water pollution dynamics. Addi
tionally, advancing remote sensing technology to detect and monitor 
chemicals such as pesticides, fertilizers, and emerging pollutants like 
microplastics will be vital.

5. Conclusions

Our review has critically evaluated studies on the application of 
remote sensing technologies for monitoring water pollution, covering 
chemical, biological, and physical domains. Key findings indicate that 
remote sensing, through multispectral and hyperspectral imaging, is 
highly effective in detecting and quantifying pollutants over large 
spatial areas and temporal scales. Integrating advanced data processing 
techniques, such as machine learning and deep learning, has signifi
cantly enhanced the accuracy and efficiency of remote sensing appli
cations, enabling more precise identification and quantification of water 
pollutants.

Remote sensing stands as a pivotal tool in ongoing efforts to monitor 
and mitigate water pollution. With sustained advancements and 
collaborative efforts, the potential of remote sensing to contribute to the 
sustainable management of water resources and the protection of 
aquatic environments is immense. However, challenges persist, 
including technical limitations of sensors, atmospheric and aquatic in
terferences, and the need for comprehensive data analysis frameworks. 
Continuous innovation in sensor technology, algorithm development, 
and interdisciplinary collaboration is essential to overcome these 
hurdles.

Remote sensing technologies have proven indispensable in the global 
effort to monitor and mitigate water pollution. By continuously 
advancing these technologies and integrating them with continuous, 
real-time biosensor measurements, we can develop more effective water 
management strategies and decision-making policies, leading to 
improved environmental outcomes and the sustainable management of 
water resources.
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