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A B S T R A C T   

Despite medical and technological advances to contain the proliferation of pancreatic cancer, many diagnoses are 
late due to the high specificity of this type of cancer. Because it is asymptomatic cancer until the most advanced 
or terminal state, the efficiency of therapeutic actions can be reduced. HIF-1α is the factor that regulates crucial 
genes involved in tumor proliferation and metastasis. In this study, a virtual structure-based screening was 
carried out to evaluate the alignment between pharmacokinetics and pharmacodynamics against the anti-cancer 
mechanism of the pancreas via HIF-1α of new derivatives of the natural product berberine, a natural alkaloid 
based on protic isoquinoline whose antitumor effect is reported in the literature. Here, a multiparametric 
optimization system is used to estimate, quantitatively and topologically, the alignment between the pharma-
cokinetic attributes of these analogs, where it was possible to observe that the less lipophilic analogs, that is, the 
1a-b derivatives, showed better ADME viability. Furthermore, the substitution of alkyl bromide promotes an 
inductive electron-withdrawing effect that increases the probability of demethylation in analog 1b and reduces 
the number of O-dealkylation sites, increasing the metabolic stability of the compound. The results of molecular 
docking suggest that the ligands with better viability of ADME also present a great affinity and specificity for the 
HIF-1α receptor, mainly in interactions in common with the residue of Thr 196, present in the binding site of the 
OGA inhibitor, constituting promising ligands in the treatment of pancreatic cancer.   

1. Introduction 

Despite technological and medical advances in the diagnosis and 
treatment of various cancers worldwide, pancreatic cancer, in partic-
ular, remains the most aggressive and lethal. In the year 2020, the 
mortality from pancreatic cancer reached a staggering range of 90% 
among affected people [1], although chemotherapy causes significant 
progress in treatment [2]. However, in many cases, patients present 
asymptomatic situations of the disease, which reduces the accuracy of 
diagnoses, only being identified in more advanced stages of the disease 
and, consequently, reducing the degree of reversibility from therapeutic 
actions [3]. 

Pancreatic neoplasms can be divided into two groups: endocrine 
tumors, which affect the secretion of hormones such as insulin, glucagon 
and somatostatin, and non-endocrine or exocrine tumors, associated 
with the secretion of digestive enzymes, such as trypsinogen, chymo-
trypsinogen, lipase and amylase [4,5]. Exocrine cancer is the most 
common and most aggressive. In this group, pancreatic ductal adeno-
carcinoma (PDAC) stands out, often diagnosed in an advanced state and 
metastasizes mainly to the liver and lymph nodes. In this case, 
anti-cancer therapies are not very effective, as the tumor acquires 
advanced cytoprotective mechanisms that promote drug resistance [5]. 

Hypoxia is a condition of a deficiency of oxygen in body tissues 
triggered by a malfunction or response to some abnormal function. This 

* Corresponding authors. 
E-mail addresses: emmanuel.marinho@uece.br (E. Silva Marinho), hdmcoutinho@gmail.com (H.D.M. Coutinho).  

Contents lists available at ScienceDirect 

Journal of Molecular Structure 

journal homepage: www.elsevier.com/locate/molstr 

https://doi.org/10.1016/j.molstruc.2023.136508 
Received 19 May 2023; Received in revised form 12 July 2023; Accepted 27 August 2023   

mailto:emmanuel.marinho@uece.br
mailto:hdmcoutinho@gmail.com
www.sciencedirect.com/science/journal/00222860
https://www.elsevier.com/locate/molstr
https://doi.org/10.1016/j.molstruc.2023.136508
https://doi.org/10.1016/j.molstruc.2023.136508
https://doi.org/10.1016/j.molstruc.2023.136508
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2023.136508&domain=pdf


Journal of Molecular Structure 1294 (2023) 136508

2

is a very common condition in the microenvironment of solid tumors. 
The Hypoxia-Inducible Factor 1α (HIF-1α) is the main regulator of 
cellular response to these abnormal functions. In regions of intratumoral 
hypoxia, HIF-1α regulates crucial genes to mediate proliferation, stem 
cell maintenance and the process of metastasis itself [6–8]. In this way, 
organic compounds that selectively modulate HIF-1α can effectively 
reduce the proliferation of pancreatic cancer cells. 

Alkaloids, for example, are a class of organic compounds that are 
present as secondary metabolites in natural products and responsible for 
various pharmacological activities, including their anticancer thera-
peutic potential [9]. Alkaloids have reinvigorated the development of 
drugs from quinolines and isoquinolines of fundamental importance for 
pharmaceutical chemistry, such as morphine, codeine and berberines 
[10]. 

Berberine, also known as Coptis rhizome, is a natural alkaloid whose 
chemical structure is formed by a protic isoquinoline, called proto-
berberine, linked to an oxygenated substructure of benzodioxole [11] 
(Fig. 1). It is widely used in Chinese folk medicine and can be extracted 
from plant species such as Berberis, whose rich therapeutic activities 
include anti-Alzheimer’s [12], anti-diabetic [13], anti-inflammatory 
[14], anti-viral [15], anti-bacterial [16] and, the one addressed in the 
problematic of this study, anti-cancer [9]. 

For this structure-based virtual screening study, a series of com-
pounds derived from the natural product berberine were selected, whose 
main pharmacophore is based on the substitution of alkyl chains in the 
methoxylated isoquinoline substructure of the bibliographic review 
study by Gaba et al. [17]. These substances were evaluated in an in vitro 
cytotoxic study published by Wang et al. [18], where the addition of 
alkyl chains was induced by 9-O-demethylation (1) in high vacuum at 
190 ◦C, where aromatic hydroxylation favored alkylation in dime-
thylformamide (DMF) (Fig. 2). The second group of substituted radicals 
(2) constitute more lipophilic derivatives with the addition of alkyl and 
O-alkyl radicals on carbon 13 of the isoquinoline substructure, under 
ethanol (EtOH) at 85–95 ◦C [19]. So far, the first group (1) has induced 
apoptosis in HeLa cell lines with a low concentration (5 μM), while the 
second group (2) has shown promise in inhibiting the proliferation of 
HepG2, HT-29 and BFTC905 cell lines [17]. 

Based on this premise, this work consists of a structure-based virtual 
screening study of a series of substituted alkyl berberine derivatives that 
raise approaches for predicting the pharmacokinetics and pharmaco-
dynamics of new HIF-1α modulators in the treatment of pancreatic 
cancer based on multiparameter optimization (MPO) and molecular 
docking techniques. 

2. Material and method 

2.1. Molecular lipophilicity potential and topological analysis 

Initially, the two-dimensional representation of the chemical struc-
tures of the natural product berberine and its analogs 1a-c and 2a-b 
were plotted by the long-term support version of the academic license 

software MarvinSketch®, version Iodine 7, Chemaxon© (https://che 
maxon.com/marvin), for the calculation of the Molecular Lipophilicity 
Potential (MLP), as shown in Eq. (1): 

MLPk =
∑N

i=1
Fi⋅f (dik) (1) 

Where N is the number of molecular fragments, F is the lipophilicity 
index of each fragment i, negative for hydrophilic fragments and posi-
tive for hydrophobic fragments, and f(dik) is a function of the spatial 
distance (k) between fragments i [20]. 

The plotted ligands were optimized using the Merck Molecular Force 
Field 94 (MMFF94) [21], configured for a very strict optimization limit, 
which returns the conformation with the lowest potential energy in 
kcal/mol in its prehydrogenized structure and considering bonds of 
intramolecular hydrogen. Then, the structures were uploaded in the 
Jmol Java Script program, version 10.0 (https://jmol.sourceforge.net/), 
for visualization of the MLP surface based on the Molecular Electrostatic 
Potential (MEP) plot, as shown in Eq. (2): 

Π =
1
m
∑m

i=1
|V(ri) − Ṽ| (2) 

Where V(ri) is the MEP calculated at a point ri, Ṽ is the MEP of the 
complete molecular surface, including anionic and cationic sub-
structures. The Π parameter can identify polar surface areas (PSA) and 
the quantitative neighborhoods of atoms [22], resulting in a surface map 
where the points vary from blue (hydrophilic) to red (lipophilic). 

2.2. MPO desirability functions to ADME estimative 

The ligands, in simplified molecular-input line-entry system 
(SMILES) notation, were uploaded to Java Script Marvin software for 
quantitative estimation of drug-likeness based on the desirability func-
tion (D) from Pfizer’s Multiparameter Optimization (MPO) algorithm, 
expressed by the Eq. (3) [23] and analyzed by chemical intelligence in 
the opensource software OSIRIS DataWarrior version 5.5.0, open-
molecules (https://openmolecules.org/datawarrior/): 

D =
∑M

k=1
wkTk

(
x0

k

)
(3) 

Where T(x) is the order of satisfaction for a calculated physico-
chemical attribute k, which is inside (xk < xa) or outside (xb < xk), which 
includes the limits: lipophilicity by partition coefficient (logP ≤ 3) and 
distribution coefficient in physiological pH (logDpH 7.4 ≤ 2), Molecular 
Weight (MW ≤ 360 g/mol), Topological Polar Surface Area (40 < TPSA 
≤ 90 Å2), H-bond donor count (HBD ≤ 1) and pKa from the most basic 
center (pKa ≤ 8); and w is the weighting factor of each attribute k in the 
final MPO score, which ranges from 0 (poor drug-likeness) to 6 (optimal 
drug-likeness), with favorable MPO values > 5 that indicate an align-
ment between fundamental attributes of absorption, distribution, 
metabolism and excretion (ADME), which include: passive permeability 
(Papp) in Madin-Darby Canine Kidney (MDCK) cell line, passive efflux by 
intestinal P-glycoprotein (P-gp), metabolic stability in the Human Liver 
Microsome (HLM) and intrinsic clearance of the unbound systemic 
fraction (CLint,u). ADME descriptors were estimated using structure- 
based virtual screening services on ADMETlab 2.0 (https://admetmesh 
.scbdd.com/) and ADMETboost – AI Drug Lab (https://ai-druglab.smu. 
edu/) to validate the alignment between the pharmacokinetic attri-
butes of the ligands [24]. 

2.3. Site of metabolism and toxicity prediction 

The ligands, converted into SMILES notation, were reported to the 
SMARTCyp online server (https://smartcyp.sund.ku.dk/mol_to_som) for 
site metabolism prediction. The test is based on a similarity test using 
activation energies determined by density functional theory (DFT) for 
more than 250 known molecules to estimate the most likely site of Fig. 1. Two-dimensional representation of the chemical structure of berberine.  
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metabolism, generating a 2D probability map that was associated with 
the probability of the compounds are substrates of cytochrome P450 
(CYP450) isoforms of types 2C9, 2D6 and 3A4 [25], and that they result 
in hepatotoxic damage (H–HT descriptor) of the ADME predictive test. 

2.4. Molecular docking against HIF-1α receptor 

With molecular docking methodology adapted from the study by 
Frota et al., (2022) [26], the RCSB Protein Data Bank (PDB) repository 
(https://www.rcsb.org/) was consulted to obtain the target called 
"Factor Inhibiting HIF-1α alpha in complex with HIF-1α alpha fragment 
peptide" (PDB ID: 1H2M) determined by X-ray diffraction (R-Value Free: 
0.225, R-Value Work: 0.192 e R-Value Observed: 0.194), deposited at 
repository under a resolution of 2.50 Å, and classified as Transcription 
Activator/Inhibitor in Homo sapiens organism. The target preparation 
included the removal of N–OXALYLGLYCINE (OGA), residual water 
(H2O) and sulfate and zinc ions, followed by the addition of polar hy-
drogens and Gasteiger charges via AutoDockTools® software [27]. The 
grid box had its center set at x = 21.473, y = 28.353 and z = 28.124, 
with dimensions x = 58, y = 66 and z = 56 using the Exhaustiveness 
criterion equal to 64. Finally, the AutoDockVina® [28] software per-
formed molecular docking simulations with 20 independent simulations 
with 10 poses each for each molecule. The grid box parameters were 
adjusted for the OGA inhibitor binding site. 

The "best-pose" selection criteria include : (i) Root Mean Square 
Deviation (RMSD) < 2.0 Å [29], as a statistical validation model; (ii) 
affinity energy, given by the Gibbs free energy descriptor (ΔG), within 
the ideality standard ≤ − 6.0 kcal/mol [30]; and (iii) classification of the 
strengths of H-bond and hydrophobic interactions, by distances (d) 
Ligand-Receptor (L–R), into strong (d < 2.5 Å), moderate (2.5 Å < d <
3.1 Å) and weak (3.1 Å < d) [31]. 

3. Results 

3.1. MPO desirability and topological analysis 

Pfizer’s MPO system was applied to quantitatively estimate the drug- 

likeness of alkylated berberine derivatives, considering the maximum 
and minimum limits that resulted in the transformed values. In the radar 
graph of Fig. 3, it is possible to observe that the lipophilicity of these 
derivatives, either by logP or by logD at physiological pH, varies with 
the increase in molecular weight. Here, it is worth mentioning that the 
compounds with longer alkyl side chains (12 C atoms), that is, the de-
rivatives 1c ((CH2)11CH3), 2a ((CH2)11CH3) and 2b (O(CH2)11CH3), shift 
outside the ideal buffered lipophilicity spectrum (logDpH 7.4) estimated 
by the algorithm, which considers a physicochemical space for drugs, 
drug candidates and active substances in the CNS database of Pfizer, Inc. 
[23]. 

In Fig. 4, it is possible to note that these side chains contribute in an 
atomistic increment of around 0.44, with a higher lipophilicity index for 
the terminal carbons (0.68), within the MLP scale estimated by the 
atomistic logP prediction method of Chemaxon©, resulting in essentially 
hydrophobic molecular surface regions, where the spectrum varies from 
yellow to red (Fig. 5). However, they present a positively charged center 
as a hydrophilic region (green to blue spectra), with an atomistic 

Fig. 2. Sites of alkylation as a key point for increasing the anticancer activity of berberines.  

Fig. 3. Physicochemical space radar generated by Pfizer’s MPO algorithm to 
estimate the drug-likeness of berberine and its analogs 1a-c and 2a-b. 
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contribution of the order of − 4.48. 
The synthetic derivatives, as well as the natural product berberine, 

are within a calculated polar surface range of 40.8 Å2, with a strong 
contribution from the hydrogen-accepting R-O-R groups of the 1,3-diox-
olane and dimethoxyphenyl substructures, except the 2b ligand, where 
the R-O(CH2)11CH3 fragment contributes an additional polar surface of 
9.23 Å2 [32] (Table 1). In the MLP map, it is possible to observe that the 
Br atom exerts an electron-withdrawing inductive effect that makes the 
alkyl chain (CH2)3Br (1b) partially hydrophilic, with atomistic lip-
ophilicity indices that vary between − 0.08 and 0.06 which, when 
combined with the hydrophilic effect on the R3N⁺ protic substructure of 
isoquinoline (green to blue spectra), resulted in a logDpH 7.4 on the order 
of − 0.3 (Fig. 6a). The same electrophilic region R3N⁺ is responsible for 
the formation of a hydrophilic surface in the natural product berberine 
and its alkylated analog 1a. However, the side chain (CH2)8CH3 pro-
motes an extension on the lipophilic surface of compound 1a, compared 
to the natural product, resulting in a logDpH 7.4 on the order of 2.26 
(Fig. 6a). 

Thus, considering the similar range of polarity between the ligands, 
the compounds were filtered in a physicochemical space that aligned 
relative lipophilicity (logDpH 7.4) and calculated MW (in g/mol) to 
Pfizer’s MPO algorithm to determine the degree of passive permeability 
of compounds as a function of their structural modifications. On a visual 
inspection of Fig. 6b, it is possible to observe that the compounds with 

molecular size lower than 480 g/mol, that is, the lower alkyl chain an-
alogs (berberine, 1a and 1b) showed low relative lipophilicity (logDpH 

7.4 < 3) and reside in a more favorable physicochemical space with MPO 
score > 5. It is noteworthy that the berberine compound had the best 
drug-likeness score (MPO = 6.0), followed by ligands 1b (MPO = 5.40) 
and 1a (MPO = 5.24), as the compounds with the best ADME profile. 

3.2. ADME estimated descriptors 

This systematic decision corroborates the prediction of the ADME 
descriptors since the compound berberine showed better passive intes-
tinal permeability (Papp MDCK = 3.5 × 10⁻⁵ cm/s), followed by deriv-
ative 1b, with Papp MDCK value estimated at 2.5 × 10⁻⁵ cm/s, and 
derivative 1a, with predicted Papp MDCK value of 2.0 × 10⁻⁵ cm/s 
(Table 2), agreeing with the pharmaceutical classification system of 
Pfizer’s MPO algorithm [33]. In contrast, ligands with logDpH 7.4 > 3 
showed the lowest MPO scores and reduction in their passive perme-
ability potential due to the high lipophilicity of their longer alkyl side 
chains (Fig. 6b). In addition, the high lipophilicity of these compounds 
makes analogs 1c ((CH2)11CH3), 2a ((CH2)11CH3) and 2b (O 
(CH2)11CH3) reside outside the spectrum of greater efficiency as ligands, 
compounds in this range of lipophilicity can reach the CNS [34] (Fig. 7). 

The pharmacokinetic spectrum expressed in the heatmap of Fig. 7 is 
a graphical response of empirical decisions between the predictive tools 

Fig. 4. Structural increments of molecular fragments in molecular lipophilicity potential (MLP) of berberine derivatives.  
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used. In this, it is possible to observe that compounds 1a-b. The natural 
product berberine presents an alignment between high passive perme-
ability (Papp > 10 × 10⁻⁶ cm/s) and low hepatic clearance (CLint,u < 50 
mL/min/kg), resulting in ranges of GI absorption > 72% and the best 
estimates of oral bioavailability (F%) around 40% (Table 2). Although 
the compounds tend to suffer passive efflux by P-gp (+++ token), the 
low lipophilicity of the compounds with the smallest side chain alkyl 
(1a-b) and berberine has a volume of distribution around 3.8–4.5 L/kg 
that allows a better uniform distribution of their molecular fractions 
between blood plasma and biological membranes [35] (Table 2). 

3.3. Site of metabolism and toxicity prediction 

In the probability map of Fig. 8, it is possible to observe how the 
metabolism sites are affected by the structural modifications in the 
generic structure of berberine. In the ADME predictive test, all com-
pounds tended to act as substrates for the CYP2C9 and CYP2D6 isoforms 
(Fig. 7). With this analysis, it is possible to observe that the alkylbromide 
substituent linked in the R1 position ((CH2)3Br), the 1b analog, performs 

an electron-withdrawing inductive effect that increases the probability 
of demethylation of the 1,3-benzodioxole substructure by these CYP450 
isoforms. The alkyl group R-(CH2)8CH3 reduced the number of O-deal-
kylation sites in analog 1a, evidencing the stability of these ligands to 
pre-systemic metabolism (Fig. 8), constituting one less secondary 
metabolite in comparison to the class of substituents in the R2 group. On 
the other hand, alkyl substitutions in the R2 position (2a-b) of the iso-
quinoline substructure return the condition of double O-dealkylation to 
the generic structure of berberine, resulting in more sites susceptible to 
pre-systemic metabolism as an indication of low stability metabolic. 
Corroborating this, it was possible to notice that compounds 1a, 1b and 
berberine presented the best clearance spectrum (Fig. 7) predicted by 
the ADME consensus test. 

In this test, it was possible to see that structural modifications based 
on alkylation decreased the susceptibility of unsaturated centers to un-
dergo epoxidation by aromatic hydroxylation, a hepatotoxic tox-
icophore, by metabolic activation [36]. This decision corroborates the 
low risk of hepatotoxicity predicted by the ADME consensus test, as well 
as the pLC50 values (-log10LC50 in mg/L) > 5.0 which infer an indication 

Fig. 5. Molecular lipophilicity potential (MLP) surface map of the most lipophilic ligands (1c and 2a-b).  

Table 1 
Physicochemical properties of the berberine analogs used in the pharmaceutical classification system from Pfizer’s MPO algorithm.  

Property Berberine Berberine derivatives 

1a 1b 1c 2a 2b 

logP − 1.28 2.26 − 0.37 3.60 4.12 3.44 
logD − 1.28 2.26 − 0.37 3.60 4.12 3.44 
MW 336.37 g/mol 448.58 g/mol 443.32 g/mol 490.66 g/mol 504.69 g/mol 520.69 g/mol 
TPSA 40.80 Å2 40.80 Å2 40.80 Å2 40.80 Å2 40.80 Å2 50.03 Å2 

HBD 0 0 0 0 0 0 
pKa − 4.38 − 4.39 − 4.39 − 4.39 − 4.38 − 4.29 
MPO score 6.00 5.24 5.40 3.97 3.44 4.06 
Pfizer rule Accepted Accepted Accepted Rejected Rejected Rejected 
GT rule Accepted Accepted Accepted Accepted Rejected Rejected 

Legend: MW (molecular weight); TPSA (Topological Polar Surface Area); HBD (H-bond donor); MPO (Multiparameter Optimization); GT (Golden Triangle rule). 
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of low acute toxic response (Table 2). 

3.4. Evaluation of molecular docking against HIF-1α receptor 

After the redocking process with the co-crystallized OGA ligand, the 
best pose of the ligand fits in an RMSD in the order of 1.176 Å (Table 3), 
which suggests that the parameterization promotes an excellent binding 
specificity of the ligand against the HIF-1α receptor [29], in order of free 
energy (ΔG) = − 5.142 kcal/mol which, when compared to the other 
independent simulations, suggests that the formation of the complex 
between the ligand and the HIF-1α receptor may require greater energy 
than system (Fig. 9). Here, it is worth mentioning that ligand 2a pre-
sented the best free energy order at the end of the coupling simulations, 
with a calculated ΔG value of − 8.579 kcal/mol. However, the ADME 
ligands with the highest viability, i.e., analogs 1a and 1b (and the nat-
ural product berberine), obtained a final score of − 8.04, − 7.633 and 
− 7.903 kcal/mol, values that meet the criterion of ideal affinity energy 
for ligand-receptor complex formation (ΔG < − 6.0 kcal/mol) [30]. 

The calculation of the distances between the ligands and the HIF-1α 
receptor was associated with the types of interaction with the amino 
acid residues, which can be seen in Table 3. In a visual inspection of 
Fig. 10, it is possible to observe that berberine binds from the same 
catalytic site as the co-crystallized ligand OGA (Fig. 10a), with in-
teractions in common with residues of Gln 147 and Thr 196, with a 
strong contribution of the isoquinoline substructure (Fig. 10b). The 
natural product interacts with the Gln 147 residue by H-bond in-
teractions (blue spectrum in the heatmap of Fig. 10c) with a calculated 
distance of 2.81 Å, characterized as strong ligand-receptor interaction 
(distance < 3.0 Å) [31], where the ph-OCH3 group attached to C10 of the 
protic isoquinoline substructure interacts with the amine group (NH2) of 
Gln 147 residue by H-bond interactions (Fig. 10d). 

After the cycle of 20 independent simulations for each of the ligands, 
it was possible to notice that the analogs with better ADME viability, 
that is, ligands 1a ((CH2)8CH3) and 1b ((CH2)3Br), as well as compound 
1c ((CH2)11CH3), bind to the HIF-1α receptor inhibition site, occupied 
by the OGA control ligand (Fig. 11a), and showed interactions in 

Fig. 6. Molecular lipophilicity potential (MLP) surface map (a) and alignment between physicochemical attributes and pharmacokinetic descriptors of compounds 
via Pfizer’s MPO (b). 

Table 2 
Pharmacokinetic properties estimated by the ADME consensus test between the ADMETboost – AI Drug Lab – and ADMETlab platforms for berberine derivatives.  

Property Berberine Berberine derivatives 

1a 1b 1c 2a 2b 

Papp rate 3.5 × 10⁻⁵ cm/s 2.0 × 10⁻⁵ cm/s 2.5 × 10⁻⁵ cm/s 1.6 × 10⁻⁵ cm/s 1.4 × 10⁻⁵ cm/s 1.5 × 10⁻⁵ cm/s 
P-gp s +++ +++ +++ +++ +++ +++

GI abs. 73.73% 72.21% 72.23% 70.05% 71.21% 69.31% 
F% 44.61% 36.46% 41.75% 32.93% 33.42% 33.33% 
VD 3.89 L/kg 4.49 L/kg 4.11 L/kg 4.79 L/kg 4.76 L/kg 4.9 L/kg 
CYP2C9 ++ ++ ++ ++ +++ +++

CYP2D6 +++ +++ +++ +++ +++ +++

CYP3A4 – – – – – – 
CLint,u 41.09 mL/min/kg 49.13 mL/min/kg 45.2 mL/min/kg 53.59 mL/min/kg 52.59 mL/min/kg 53.59 mL/min/kg 

H-HT — — – — — — 
pLC50 5.52 mg/L 6.58 mg/L 6.33 mg/L 6.59 mg/L 6.68 mg/L 6.87 mg/L 

Legend: Papp values were estimated from the in vitro test database via MDCK cell line from ADMETlab 2.0. For the classification endpoints, the prediction probability 
values are transformed into six symbols: 0–0.1(—), 0.1–0.3(–), 0.3–0.5(-), 0.5–0.7(+), 0.7–0.9(++), and 0.9–1.0(+++). 
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common with Gln 147 and Thr 196 residues (Fig. 11b). The ligands 
residing in the physicochemical space of greater pharmacokinetic 
viability showed strong H-bond interactions with the residue of Gln 147 
(blue spectrum in the heatmap of Fig. 11c), with distances evaluated at 
2.39 Å and 2.49 Å (1a and 1b, respectively), with a contribution from 
the ph-OCH3 linked to the protic isoquinoline substructure, similar to 
the pharmacophore recorded in the previous analysis with the natural 

product (Fig. 10d). Here, it is important to highlight that, although the 
alkylbromide side chain positively affects the pharmacokinetics of 
cellular permeability and metabolic stability of ligand 1b, it was possible 
to observe that this side chain resulted in a repulsion effect to the Asn 
205 residue (purple colored ligand in Fig. 11b), OGA ligand interaction 
residue, with calculated distance around 10 Å (Fig. 11c). 

Finally, the second class of alkyl compounds substituted at C13 of the 

Fig. 7. ADME viability heatmap of berberine derivatives 1a-c and 2a-b.  

Fig. 8. Metabolism site prediction for the natural product berberine and its synthetic analogs 1a-c and 2a-b.  
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isoquinoline substructure, that is, the berberine analogs 2a and 2b, 
belonging to the class of compounds with lower ADME viability in this 
study, show weak interactions with the amino acid residues of the site of 
inhibition in common with OGA, i.e., Gln 147, Thr 196, Asn 205 and Asn 
294 (Fig. 12b), where the calculated distances were > 3.0 Å [31] 
(Fig. 12c). However, they bind at the same site catalytic (Fig. 12a). 

4. Discussion 

Berberine-derived compounds play a key role in the development of 
new anticancer drugs. Therefore, studies have been raising efforts to 
improve the therapeutic effect of berberine from the alkylation of its 
methoxy centers, as long as this does not cause a decrease in its phar-
macokinetic properties, such as passive permeability, efflux and trans-
membrane transport and metabolic stability [37,38]. 

A quantitative structure-activity relationship (QSAR) system per-
fected by Pfizer, Inc., in recent years [39,40] reveals that small and 
slightly lipophilic compounds (MW < 500 g/mol with logP < 3), pro-
vided they are more polar than commercially available CNS-active 
compounds (TPSA > 40 Å2), show a systematic alignment between 
three in vitro attributes of ADME: high passive permeability (Papp MDCK 
> 10 × 10⁻⁶ cm/s), low susceptibility to passive efflux by P-gp and low 
rate of intrinsic clearance of the unbound fraction in the human hepatic 
system (CLint,u < 100 mL/min/kg). 

In this study, it was approached that possible alkylations in aromatic 
centers of the isoquinoline substructure of the generic structure of the 
natural product berberine could improve its pharmacokinetic effect to 
enable its anticancer effect. Predictive pharmacokinetic results suggest 
that compounds with a lower alkyl side chain, that is, the synthetic 
derivatives 1a-b, presented a better distribution of their molecular 
lipophilic surface when compared to analogs with a 12-carbon saturated 
side chain (1c, 2a-b), which infers their occupation in a physicochem-
ical space with better pharmacokinetic alignment. These factors 
corroborate the estimated ADME descriptors, as they showed excellent 
passive intestinal permeability and greater metabolic stability. 
Furthermore, very lipophilic compounds reside outside this physico-
chemical space and may present risk factors, such as bioaccumulation in 
biological tissues [41]. 

Predicting the site of metabolism is a fundamental step in estimating 
the toxic effects of new prototype substances proposed to be used as an 
oral drug. This test can relate the degree of specificity of molecular 
functional groups to phase I metabolism, mediated by CYP450 isoforms, 
with the sensitivity to being biotransformed by known redox routes of 
the human liver microsome (HLM) system [42,43]. This prediction al-
lows for establishing relationships between toxic effects and half-life, as 
these processes mainly infer the clearance route of these drugs [39]. 
Furthermore, this allows to avoid compounds that form reactive, sec-
ondary metabolites, such as compounds based on epoxides, whose hy-
droxylation in aromatic centers constitute unstable and highly reactive 
intermediates, whose nucleophilic effect can covalently bind to macro-
molecules such as proteins and DNA and induce damage to the liver and 
mutagens [36,44,45]. 

Demethylation is the metabolic process involving most of the sec-
ondary metabolites of berberine, including demethyleneberberine, by 
demethylation of the benzodioxole substructure, and berberrubine and 
thalifendine, by O-dealkylation type metabolism of the dimethox-
yphenyl substructure [46–48,38,49]. 

Here, it was possible to observe that substitutions based on alkyl side 
chains did not even indicate a risk of aromatic hydroxylation, corrobo-
rating the indication of low human hepatotoxic response (H–HT) of 
substances in the ADME predictive test. Furthermore, it was possible to 
point out that the inductive effect of withdrawing electrons from the 
alkyl bromide side chain induced the demethylation of the O–CH2–O 
fragment of the benzodioxole substructure and reducing the number of 
O-dealkylation sites, reducing the number of possible metabolites found 
in the systemic circulation and hepatic clearance. 

In a theoretical study of pharmacodynamics recently published by 
Frota et al., (2022) [26], it was possible to observe that natural poly-
phenolic biflavonoids showed H-bond interactions, in HIF-1α receptor, 
in common with the residue of Thr 196, of the catalytic site of the 
co-crystallized OGA inhibitor, as a strategy for the discovery of new 
inhibitors of the proliferation of pancreatic cancer cells from natural 
products. Interestingly, the Thr 196 residue is involved in stabilizing the 

Table 3 
Details on interactions between berberine analogs and HIF-1α receptor amino 
acid residues.  

Compound RMSD Interactions parameters 

AA residue Distance Type 

Berberine* 1.106 Å Tyr 102 3.86 Å Hydrophobic   
Trp 296 3.82 Å Hydrophobic   
Gln 147 2.81 Å H-bond   
Glu 202 3.18 Å H-bond   
Gln 203 2.25 Å H-bond 

1a 1.896 Å Tyr 102 3.42 Å Hydrophobic   
Tyr 102 3.61 Å Hydrophobic   
Tyr 102 3.80 Å Hydrophobic   
Leu 186 3.43 Å Hydrophobic   
Leu 188 3.73 Å Hydrophobic   
Phe 207 3.31 Å Hydrophobic   
Ile 281 3.64 Å Hydrophobic   
Ile 281 3.42 Å Hydrophobic   
Trp 296 3.56 Å Hydrophobic   
Trp 296 3.70 Å Hydrophobic   
Gln 147 2.39 Å H-bond   
Glu 202 2.31 Å H-bond   
Gln 203 2.00 Å H-bond 

1b 1.652 Å Tyr 102 3.59 Å Hydrophobic   
Leu 188 3.51 Å Hydrophobic   
Thr 196 3.76 Å Hydrophobic   
Trp 296 3.81 Å Hydrophobic   
Gln 147 2.49 Å H-bond   
Gln 203 2.86 Å H-bond 

1c 1.102 Å Tyr 102 3.76 Å Hydrophobic   
Tyr 102 3.73 Å Hydrophobic   
Tyr 102 3.75 Å Hydrophobic   
Leu 186 3.53 Å Hydrophobic   
Leu 186 3.98 Å Hydrophobic   
Asp 201 3.93 Å Hydrophobic   
Glu 202 3.97 Å Hydrophobic   
Gln 203 3.74 Å Hydrophobic   
Trp 296 3.75 Å Hydrophobic   
Trp 296 3.95 Å Hydrophobic   
Trp 296 3.64 Å Hydrophobic   
Trp 296 3.75 Å Hydrophobic   
Gln 147 2.57 Å H-bond 

2a 1.565 Å Tyr 93 3.62 Å Hydrophobic   
Tyr 93 3.71 Å Hydrophobic   
Phe 100 3.61 Å Hydrophobic   
Tyr 102 3.67 Å Hydrophobic   
Thr 196 3.51 Å Hydrophobic   
Trp 296 3.50 Å Hydrophobic   
Thr 149 2.28 Å H-bond   
Glu 202 3.08 Å H-bond   
Glu 202 2.53 Å H-bond 

2b 1.961 Å Tyr 102 3.47 Å Hydrophobic   
Leu 186 3.96 Å Hydrophobic   
Leu 188 3.40 Å Hydrophobic   
Leu 188 3.95 Å Hydrophobic   
Thr 196 3.39 Å Hydrophobic   
Phe 207 3.62 Å Hydrophobic   
Ile 281 3.76 Å Hydrophobic   
Trp 296 3.76 Å Hydrophobic   
Ser 91 2.24 Å H-bond   
Asp 201 2.81 Å H-bond 

OGA** 1.176 Å Gln 147 3.51 Å H-bond   
Gln 147 3.46 Å H-bond   
Thr 196 2.89 Å H-bond   
Asn 205 2.92 Å H-bond   
Asn 294 3.79 Å H-bond 

*natural product; 
*co-crystallized inhibitor. 
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Fig. 9. Calculated values of Gibbs free energy (ΔG) in the formation of ligand-receptor complexes of berberine analogs 1a-c and 2a-b against the HIF-1α receptor.  

Fig. 10. HIF-1α receptor with highlighted active site (a), co-crystallized inhibitor OGA (magenta) and berberine (yellow) and amino acid residues from the active site 
(b), heatmap relating distance and type of ligand-receptor interactions (c) and a two-dimensional model showing the H-bond interaction of the ph-OCH3 group of 
berberine with the amine group of the Gln 147 residue (d). 
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active site of HIF-1α and constitutes a key point in discovering selective 
competitive inhibitors in relation to the control ligand OGA [50]. In a 
study that combines in vitro assays and molecular docking, it was 
possible to notice that structural modifications in coumarin derivatives 
potentiated the effect of this class of compounds (derived from the 
natural product coumarin) in the inhibition of the proliferation of 
HepG2 cells, at the same time that all the synthetic analogs inhibited the 
HIF-1α target by common interactions with Thr 196 residue [51]. 

In this study, it was possible to observe that the two classes of 
substituted derivatives R1 and R2, including the natural product 
berberine, showed interactions of similar strength with the Thr 196 
residue as an indication of competitive inhibition between the ligands. 
The ligands interact with the residue by H-bond interactions with a 
strong contribution from their oxygenated groups attached to carbon 
atoms 9 and 13 in the isoquinoline substructure, showing interactions 
similar to the carboxyl and carbonyl oxygen groups of the OGA inhibitor 
ligand [50]. However, the 1a-b ligands stand out for their pharmaco-
kinetic viability, which, when combined with the optimal affinity en-
ergies, estimated at − 8.040 kcal/mol and − 7.633 kcal/mol (1a and 1b, 
respectively) [30], constitute candidates for more favorable in the 
preparation of new prototype HIF-1α inhibitors with low toxic response 
to the host. 

5. Conclusion 

In this study, a series of in silico pharmacokinetic and pharmacody-
namic characterization techniques constitute a multiparametric opti-
mization system to estimate the efficiency of new berberine derivatives 
against pancreatic cancer via HIF-1α receptor inhibition. From the sys-
tematic analysis, it was possible to observe that the less lipophilic 

ligands, that is, the 1a-b analogs and the natural product berberine, 
occupy a physicochemical space with better pharmacokinetic viability, 
at the same time that the molecular docking simulations demonstrated 
that they compete for selective and competitive inhibition by the active 
site of HIF-1α by interactions in common with the residue of Thr 196 and 
with great affinity energy. However, it is worth noting that future in vitro 
studies with specific cell lines are needed to prove the ligands’ effec-
tiveness in treating pancreatic cancer, but this step goes beyond the 
scope of this study. Thus, this work is an initial study that aims to sup-
port future studies of structural modification of berberines in the dis-
covery of new bioactive compounds against pancreatic cancer via 
modulation of HIF-1α receptors. 
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