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Carbon dots (CDs) are a novel class of fluorescent nanomaterials, with properties such as photolumines-
cence, high solubility, low toxicity, and favorable biocompatibility. They are useful for applications in bio-
medicine, sensors, solar cells, and photocatalysis, among others. CDs synthesis using vegetal, animal, or
industrial waste as a source has become a focus of interest among researchers. These waste materials are
inexpensive and available at large, and the repurposing of natural resources has the potential to reduce
pollutants and their environmental impacts. Residues from plant sources, such as peels, leaves, and flow-
ers, are preferred over other sources, and the conversion to CDs is performed mainly through the
hydrothermal method. However, some matters regarding this technology require further studies and elu-
cidation, such as the increase CD’s conversion yield from the raw material. Thus, we aimed to explore the
use of waste and by-products in CDs synthesis, their potentials, and advantages, as well as present cur-
rent challenges in the field of study.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Carbon quantum dots (CDs) are nanomaterials with semicon-
ductor properties discovered by accident in 2004, during the purifi-
cation process of a single-walled carbon nanotube [1]. They are
spherically symmetrical, with a size less than 10 nm, and a struc-
ture that can vary between amorphous and crystalline. Both amor-
phous and crystalline structures have interesting properties, such
as photoluminescence and wavelength-dependent emission, high
solubility, low toxicity, ease of functionalization, and biocompati-
bility [2].

CDs soon became a focus of interest among researchers due to
their wide variety of technological applications in several fields,
such as sensors, photocatalysis, bioimaging, drug delivery systems,
solar cells, and LED devices [3–5]. In the years following the discov-
ery of CDs, some review articles were published [4,6–10]. The
reports mainly emphasize their synthesis processes and leading
applications. Among these reported preparation processes, two-
synthesis approaches stand out, the top-down approach and the
bottom-up approach (Fig. 1).

In the top-down approach, CDs are generated from relatively
macroscopic carbon sources. Most natural products can be used
as a matrix in this method. In the bottom-up approach, small mole-
cules which –OH, –COOH, -C = O, and –NH2 groups and polymers
undergo dehydration and further carbonization to form the CDs,
carbon nanodots, and polymer dots. CDs can also be formed in a
bottom-up approach through the self-assembly of polycyclic aro-
matic hydrocarbon (PAH) [11]. Some studies combined the two
approaches mentioned, such as Li et al. (2013), regarding the syn-
thesis of fluorescent carbon nanomaterials [12].

Few articles address the use of waste and by-products for the
synthesis of carbon dots (CDS), where the full potential for using
these materials as a viable source for CD production deserves fur-
ther analysis. Usually, reports are focused on the enhanced CD’s
photoluminescent properties, such as energy conversion rates in
photocatalytic devices[13,14], solar cells [15], and LEDs [16,17].
However, the conversion yield of starting material into CDs is often
omitted, with emphasis restricted on the synthesized material’s
quantum yield. Thus, we aimed to explore the use of waste and
by-products from different sources in the CDs synthesis, their
potentials, and advantages, as well as presenting current chal-
lenges in the field of study.
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Fig. 1. Schematic representation of top-down and bottom-up synthesis approaches from waste and by-products.
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2. CDs synthesis from waste and by-products: state-of-the-art

The use of natural or industrial waste and by-products emerges
as a possibility for the transformation of materials with no aggre-
gated value into nanomaterials with high aggregated value, with
high potential for application in technological resources. Waste
and by-products possess sufficient carbon content to be considered
useful as starting materials for the synthesis of CDs, with the
advantage of safety and biocompatibility, as well the facility to
achieve the synthesis conditions [9]. Fig. 2 shows the CD’s main
sources, the most employed synthesis methods, and some relevant
applications.

Natural sources such as human hair [18], lemon peels [19], plas-
tic bottles [20,21], and manure [22,23] are rich in amino, sulfur,
carboxyl, and hydroxyl groups. Depending on the synthesis
method and the materials used as a source, these groups can
remain on the CD’s surfaces. These groups, when incorporated in
Fig. 2. Main raw waste materials, CDs syn
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a sufficient content, can provide solubility in water and additional
possibilities for passivation and functionalization of the surface
[13].

To provide a comprehensive reading of the CDs properties as a
function of the different raw material used, the CDs produced were
classified as a function of the waste type; vegetable waste and by-
products, animal waste and by-products, and industrial waste and
by-products, as well their limitations and perspectives.

2.1. Vegetable waste and by-products

Many articles discuss the use of vegetable waste as a source for
CDs synthesis [9,24–26], with the main advantages to contribute to
the reuse of vegetal by-products to produce materials with high
aggregate value. Several vegetable parts can be used as a source
for CDs, such as peels [27–29], fruits [30,31], flowers [29], and
roots [15], as showed at Table 1.
thesis methods, and CDs applications.



Table 1
Vegetable waste and by-products as a source for CDs and their related properties.

Carbon Source Synthesis Method Product Condition Quantum Yield1 Reference

Bagasse Combustion 60 �C/4 h 25,7%2 [24]
Bagasse Hydrothermal 180 �C/12 h 11,8% [42]
Bagasse pulp Chemical oxidation Toluene/24 h stirring 18,7% [43]
Orange peels Hydrothermal 200 �C/6 h 11,4% [27]
Orange peels Hydrothermal 180 �C/12 h 36,0% [30]
Orange peels Hydrothermal 200 �C/8 h 4,29% [44]
Watermelon peels Hydrothermal 220 �C/2 h 7,10% [31]
Lemon peels Hydrothermal 200 �C/12 h 14,0% [19]
Mango peels Hydrothermal 200 �C/4 h No data [45]
Onion peels Carbonization 120 �C/15 lbs. 28,0% [28]
Fruit/vegetable peels Heating 150 �C/2 h No data [29]
Coconut shell Hydrothermal 150 �C/3 h No data [25]
Papaya pulp Pyrolysis 200 �C/15 min 23,7% [46]
Rice residue Hydrothermal 200 �C/12 h 23,5% [47]
Platanus waste Carbonization/laser ablation 600 �C/2 h 32,4% [48]
Wheat straw Hydrothermal 180 �C/4 h 13,0% [49]
Wheat straw Hydrothermal 250 �C/10 h 9,20% [26]
Lotus roots Hydrothermal 170 �C/6 h No data [50]
Carboxymethylcellulose Hydrothermal 260 �C/2 h 44,0% [33]
Banana pseudo-stem Hydrothermal 120 �C/12 h 48,0% [32]
Processed white rice Carbonization 250 �C/24 h 41,0% [51]
Wine lees Carbonization 300 �C/3 h 6,80% [52]
Waste tea Hydrothermal 150 �C/6 h 7,10% [53]
Food waste Solvothermal 200 �C/2 h 0,26% [16]

1 Quinine Sulfate as reference.
2 Rhodamine B as reference.
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Vegetable waste presented the highest quantum yield values for
CD production in comparison with animal and industrial waste,
with values above 40% [32,33]. Both procedures adopted the
hydrothermal synthesis under different reaction conditions. When
the banana pseudo-stem was used as a source [32], the reaction
condition was 120 �C for 12 h, while the carboxymethylcellulose
[33] was transformed using 260 �C for 2 h. The role of the reaction
condition by the hydrothermal method in the CD’s quantum yield
is still unclear. Somehow, a compromise between the time and
temperature seems to be relevant, where with high temperature
it is required a short time, and with lower temperatures required
several hours to conversion, a detail that deserves further studies.
2.2. Animal waste and by-products

Animal waste and by-products can be classified in groups such
as crustacean shells, human waste (hair and facial skin), animal
manure, and milk-derived by-products, as showed at Table 2. Syn-
thesis procedures include hydrothermal treatment (microwave-
assisted or not), chemical oxidation, and carbonization. An envi-
ronmental concern regarding these methods is the amount of resi-
dues, resulting in additional purification steps, increasing the use
of reagents and overpricing the process.
Table 2
Animal waste and by-products as a source for CDs and their related properties.

Carbon Source Synthesis Method

Human hair Hydrothermal
Crab shell Hydrothermal/microwave-assisted
Crab shell Sonochemical
Prawn shell Chemical Oxidation/Hydrothermal
Cow manure Hydrothermal/microwave-assisted
Cow manure Chemical Oxidation
Facial tissue Chemical Oxidation
Pigeon feathers, eggs, and manure Carbonization
Expired milk Heating
Whey Thermal treatment

1 Quinine Sulfate as reference.
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CDs synthesized from animal waste and by-products are con-
ducted mainly through the hydrothermal method due to its low
cost and environmental-friendly routes. However, difficulties in
controlling particle size were reported in the hydrothermal
method [34–36].

From Table 2, the highest values for the quantum yield are
derived from pigeon feathers and eggs obtained by pyrolysis[37]
and from crab shells through microwave radiation [38], with val-
ues around 25% and 20% respectively. In this case, the microwave
method provided a good quantum yield, reducing substantially
the reaction time in comparison with the pyrolysis method [39].

2.3. Industrial waste and by-products

For industrial waste, their use as a source in the CDs synthesis
presents as main vantage the possibility to reuse a material with
no aggregated value and contribute to a reduction in waste prod-
ucts that pollute the environment. The industrial waste can be
grouped into oil, paper and plastic waste, as showed at Table 3.

From Table 3, the highest values for quantum yield are derived
from cat feedstocks [40] and petroleum coke [41], with values
around 28% and 22% respectively. Both sources were converted
into CDs by hydrothermal method under different reaction condi-
tions. Plastics such as the one used in cat feedstocks, when submit-
Product Condition Quantum Yield1 Reference

200 �C/24 h 10,7% [18]
220 �C/10 min 19,8% [38]
Ultrasonication irradiation 14,5% [54]
200 �C/8 h 9,00% [55]
250–300 �C/2 h180 W/20 min No data [22]
HNO3 – 5 M 0,65% [23]
HNO3 No data [56]
300 �C/3 h 24,9% [57]
180 �C/2 h 8,64% [58]
180–250 �C/10–40 min 11,4% [59]



Table 3
Industrial waste and by-products as a source for CDs and their related properties.

Carbon Source Synthesis Method Product Condition Quantum Yield1 Reference

Waste paper Hydrothermal 180 �C/10 h 10,8% [60]
Waste paper Hydrothermal 180 �C/12 h No data [61]
Plastic bottles Hydrothermal 180 �C/ 12 h 5,20% [20]
Plastic bottles Ultrasonic-assisted chemical oxidation H2SO4/HNO3/700 W/2min 4,84% [21]
Cat feedstocks Hydrothermal 180 �C/ 24 �C 28,0% [40]
Waste frying oil Chemical oxidation H2SO4/ 100 �C 3,66% [62]
Kerosene soot Chemical oxidation HNO3 – 5 M 3,00% [63]
Waste oil Ultrasonication H2SO4/Ultrasonic waves 7,50% [64]
Coal/petroleum coke Hydrothermal 200 �C/2 h 21,9% [41]

1 Quinine sulfate as reference.
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ted to the carbonization over a long period can result in CDs with
increased quantum yield [40]. On the other hand, petroleum coke
can be considered as a promising material, with satisfactory quan-
tum yield using higher temperatures in a considerable shorter per-
iod [41]. As observed for animal and plant residues, the
hydrothermal method was undeniable the method most used for
the CDs synthesis.
3. Conclusions

The use of waste and by-products has made advances in CDs
synthesis, due to the diversity in the applications for these materi-
als. The varied composition of the raw materials reflected in the
different values obtained for the quantum yields. The wide variety
of reaction conditions and methods of synthesis raises questions
about the route employed. Starting from the same raw material
and applying the same synthesis method, the variation in synthesis
parameters produces distinct effects on CD’s quantum yield. More-
over, the different functional groups available as starting material
improve the synthesized particles’ properties.

The repurpose of vegetable waste for CDs synthesis stands out
in comparison to animal or industrial wastes. Additionally, the
hydrothermal method is the most recurrent in the literature
because it is a low-cost technique. However, the advantages of this
synthesis technique over others are not clear. Comparative studies
based on a single synthesis matrix and employing different synthe-
sis methods may help elucidate the synthesis method’s role in con-
version yield. Also, top-down approaches produce a large amount
of residues, where the reduction of by-products remains a chal-
lenge in the field.

Future studies should focus on maximizing the conversion of
the starting material into CDs. This would reduce the loss of raw
material and the need to carry out various experiments to obtain
a significant yield of these nanoparticles.
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