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a b s t r a c t

In the treatment of anxiety and seizures, drugs of the benzodiazepine (BZD) class are used, which act on
the Central Nervous System (CNS) through the neurotransmitter gamma-aminobutyric acid (GABA).
Flavonoids modulate GABAA receptors. The aim of this study was to evaluate the anxiolytic and anticon-
vulsant effects of synthetic chalcones and their mechanisms of action via the GABAergic system, using
adult zebrafish (ZFa). The animals were treated with chalcones (4.0 or 20 or 40 mg/kg; 20 mL; i.p) and sub-
mitted to the open field and 96 h toxicity test. Chalcones that cause locomotor alteration were evaluated
in the light and dark anxiolytic test. The same doses of chalcones were evaluated in the anticonvulsant
test. The lowest effective dose was chosen to assess the possible involvement in the GABAA receptor
by blocking the flumazenil (fmz) antagonist. No chalcone was toxic and altered ZFa’s locomotion. All chal-
cones had anxiolytic and anticonvulsant effects, mainly chalcones 1, where all doses showed effects in
both tests. These effects were blocked by Fmz (antagonist GABAA), where it shows evidence of the per-
formance of these activities of the GABA system. Therefore, this study demonstrated in relation to struc-
ture–activity, that the position of the substituents is important in the intensity of activities and that the
absence of toxicity and the action of these compounds in the CNS, shows the pharmacological potential of
these molecules, and, therefore, the insights are designed for the development of new drugs.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction [3,4]. This model was extended to adult zebrafish, using three main
Anxiety is one of the common psychiatric comorbidities in epi-
lepsy, with an incidence rate reported in up to 25% of patients. The
severity of the seizures is strongly correlated with anxiety disor-
ders in patients with epilepsy [1,2]. The tracking of antiepileptic
drugs (AEDs) has been developed in rodents, and lately zebrafish
larvae have been used to prospect for anticonvulsant drugs. Studies
have shown that the pentylenetetrazole (PTZ) chemoconvulsant
model induces seizure in a concentration-dependent manner
analyses: electrophysiological evaluation in immobilized animals
[5], c-fos expression in the CNS [6], and behavioral outcome
parameters [7]. In addition, Mussulini et al. [8] performed a
detailed behavioral characterization of PTZ-induced seizures in
adult zebrafish and analyzed parameters such as mortality rate
and seizure severity.

In this regard, the PTZ-induced seizure model has been used to
screen for anticonvulsant compounds of marine origin [9] plant
derivatives [10–12] and synthetic [13]. Mussulini et al. [14] high-
lights the importance of the zebrafish model for studying epileptic
seizures and epileptic syndromes and concluded that, although zeb-
rafish larvae appear to be more attractive as a tool, adult zebrafish
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are also valuable as they can be used to study the impact of genetic
and drug manipulation on behavioral changes after seizures.

For the treatment of anxiety and seizures, drugs of the benzodi-
azepine class (BZD) are used, which include lorazepam and diaze-
pam. In the past 2 decades, concerns about the short- and long-
term risks associated with the use of BZDs have increased. They
act on the Central Nervous System (CNS) through the neurotrans-
mitter gamma-aminobutyric acid (GABA), the main inhibitory neu-
rotransmitter in the brain, and bind to GABAA receptors where they
potentiate the inhibitory action of GABA [15].

Zebrafish (Danio rerio) has gained wide popularity in behavioral
neuroscience and research in psychopharmacology [16]. The
genetic compositions of zebrafish are comparable to humans with
70% genetic similarity, while 84% of the genes known for human
diseases are widely expressed in zebrafish (Norton and Bally-Cuif
[17]). It has emerged as a robust animal model for several neuro-
logical diseases, including epilepsy [8,18]. In addition, it has con-
tributed to a better understanding of the role of several genes
that have been implicated in the disease [19].

Of interest, flavonoids and their glycosides have been shown to
have a mild to potent activity in several animal models of seizure
[20,21]. Upon investigating the mechanism of action, these structures
were found to modulate allosteric GABAA receptors by binding to the
BZD receptor site [22,23]. For this reason, studies have been carried
out to investigate the anxiolytic and anticonvulsant potential of these
compounds. [24,25]. Its neuroprotective activities are due to antioxi-
dant properties, which stimulate neuronal regeneration inducing
neurogenesis and preventing apoptosis of these cells due to oxidative
stress [26]. In nature, chalcones (subclass of flavonoids) are normally
found as chalcone aglycone and chalcone O-glycosides, but can also
be modified by hydroxylation, condensation, or methylation. They
are present in numerous families of dicotyledonous plants and in
some monocotyledons, pteridophytes, and gymnosperms [27], but
are synthesized as main components in the families Asteraceae, Mor-
aceae, Fabaceae, and Aristolochiaceae [28]. The molecular structure of
chalcones is a starting point for the synthesis of newly derived com-
pounds. In recent years, interest in these molecules has increased,
mainly due to their potential use as drugs against several human dis-
eases already reported [29,30]. Previous study demonstrated that
chalcones used in this study showed promising antimicrobial activity
[31]. The chemical structure of chalcones contains several replaceable
hydrogens that allow a large number of derivatives to be obtained
and a variety of promising biological activities to be generated, for
example, anti-inflammatory and neuroprotective [32,33] anti-
depression and analgesic effect [34] antioxidant [35] anxiolytic [36]
antiviral and anticancer [37].

In view of the relationship between flavonoids or subclasses
and GABAergic neurotransmission in the modulation of anxiolytic
and anticonvulsant activities, this study investigated the effect of
synthetic chalcones. In order to elucidate the possible direct inter-
actions of these molecules with GABAA receptors, a molecular
docking study was carried out.
2. Material and methods

2.1. Drugs and reagents

The following substances were used: diazepam (Dzp, Neo
Química�), flumazenil (Fmz; Sandoz�), dimethyl sulfoxide (3%
DMSO; Dynamic�), and pentylenetetrazole (PTZ, Sigma-Aldrich).
2.2. Synthesis and chemical characterization of chalcones

The description of the procedure of the synthesis of chalcones is
shown in Scheme 1. Chalcones (1–4) were synthesized by a Clai-
2

sen–Schmidt condensation reaction in a basic medium. At ethanol
(5 mL) solution of 2-hydroxy-3,4,6 trimethoxyacetophenone
(2 mmol) was added to a solution of benzaldehyde and the deriva-
tives (2 mmol), followed by the addition of ten drops of 50% w/v aq.
NaOH with stirring for 48 h. The solid that formed was filtered
under reduced pressure, washed with cold water, and analyzed
by TLC.

2.2.1. (E)-3-(2,4-Dichlorophenyl)-1-(2-hydroxy-3,4,6-
trimethoxyphenyl)prop-2-en-1-one (1)

Yellow solid (Yield: 73, 93%), m.p. 164.3–164.8 �C. 1H NMR
(CDCl3, ppm): 3.98 (s, MeO-30); 3.94 (s, MeO-40); 3.85 (s, MeO-
60); 6.01 (s, H-50); 7.62 (d, J = 8.5, H-3); 7.46 (d, J = 1.5, H-5); 7.30
(d, J = 1.5, H-6); 7.80 (d, Ha, J = 15,5 Hz); 8.06 (d, Hb, J = 15.5 Hz).
13C NMR (CDCl3, ppm): 192.6 (C@O); 60.7 (MeO-30); 56.1 (MeO-
40); 56.1 (MeO-60); 106.8 (C-10); 158.7 (C-20); 130.4 (C-30); 159.4
(C-40); 87.1 (C-50); 158.6 (C-60); 134.2 (C-1); 136.8 (C-2); 135.5
(C-3); 136.0 (C-4); 131.7 (C-5); 128.5 (C-6); 127.5 (Ca); 130.1
(Cb). MS (EI) m/z (M+. 383), calcd for C18H16Cl2O5/383.

2.2.2. (E)-3-(4-Chlorophenyl)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)
prop-2-en-1-one (2)

Yellow solid (Yield: 74, 68%), m.p. 94.3–96.8 �C. 1H NMR (CDCl3,
ppm): 3.96 (s, MeO-30); 3.96 (s, MeO-40); 3.94 (s, MeO-60); 6.02 (s,
H-50); 7.38 (d, J = 8.35, H-2/6); 7.53 (d, J = 8.35, H-3/5); 7.79 (d, Ha,
J = 15.6 Hz); 7.83 (d, Hb, J = 15.6 Hz). 13C NMR (CDCl3, ppm): 193.5
(C@O); 60.9 (MeO-30); 60.9 (MeO-40); 60.9 (MeO-60); 106.5 (C-10);
159.0 (C-20); 129.7 (C-30); 159.6 (C-40); 87.4 (C-50); 159.2 (C-60);
134.2 (C-1); 131.2 (C-2/6); 131.7 (C-3/5); 136.2 (C-4); 128.2
(Ca); 141.3 (Cb). MS (EI) m/z (M+. 348), calcd for C18H17ClO5/348.

2.2.3. (E)-3-(2-Fluorophenyl)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)
prop-2-en-1-one (3)

Yellow solid (Yield: 84, 07%), m.p. 144.3–144.8 �C. 1H NMR
(CDCl3, ppm): 3.96 (s, MeO-30); 3.96 (s, MeO-40); 3.84 (s, MeO-
60); 6.07 (s, H-50); 7.67 (m, H-3); 7.44 (m, H-4); 7.25 (m, H-5);
7.18 (m, H-6); 7.82 (d, Ha, J = 15,5 Hz); 8.06 (d, Hb, J = 15.5 Hz).
13C NMR (CDCl3, ppm): 193.5 (C@O); 60.0 (MeO-30); 56.2 (MeO-
40); 56.1 (MeO-60); 107.1 (C-10); 158.9 (C-20); 130.4 (C-30); 159.6
(C-40); 87.3 (C-50); 158.8 (C-60); 131.7 (C-1); 135.4 (C-2); 131.6
(C-3); 131.1 (C-4); 116.3 (C-5); 116.6 (C-6); 124.7 (Ca); 135.5
(Cb). MS (EI) m/z (M+. 322), calcd for C18H17FO5/332.

2.2.4. (E)-3-(4-Fluorophenyl)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)
prop-2-en-1-one (4)

Yellow solid (Yield: 69, 53%), m.p. 144.3–144.8 �C. 1H NMR
(CDCl3, ppm): 3.96 (s, MeO-30); 3.96 (s, MeO-40); 3.84 (s, MeO-
60); 6.07 (s, H-50); 7.63 (d, J = 8.58, H-2/6); 7.65 (d, J = 8.58, H-
3/5); 7.82 (d, Ha, J = 15,6 Hz); 7.83 (d, Hb, J = 15.6 Hz). 13C NMR
(CDCl3, ppm): 193.2 (C@O); 60.9 (MeO-30); 56.3 (MeO-40); 56.2
(MeO-60); 107.1 (C-10); 158.7 (C-20); 130.4 (C-30); 159.6 (C-40);
87.4 (C-50); 158.7 (C-60); 131.9 (C-1); 131.2 (C-2/6); 131.9 (C-
3/5); 141.5 (C-4); 127.4 (Ca); 141.5 (Cb). MS (EI) m/z (M+. 322),
calcd for C18H17FO5/332.

2.3. Animals

Zebrafish (Danio rerio), wild, adult, of both sexes (60 and
120 days; 3.5 ± 0.5 cm; 0.4 ± 0.1 g) were obtained from a local store
(Fortaleza, Ceará, Brazil). The animals were acclimated for 24 h in
glass aquariums (30 � 15 � 20 cm), containing dechlorinated
water (ProtecPlus) and air pumps with submerged filters, at
25 �C and pH 7.0, with a circadian cycle of 14:10 h (light/dark). Ani-
mals were anesthetized before drug applications and after the
experiments, the animals were sacrificed by immersion in ice
water (2 and 4 �C) for 1 min until the loss of opercular movements.



Scheme 1. Preparation of chalcones (A–D). a) NaOH 50% w v�1, ethanol (5 mL), room temperature, 48 h.
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The work was approved by the Ethics Committee for the Use
of Animals of the State University of Ceará (CEUA-UECE;
# 3344801/2017), being in accordance with the Ethical Principles
of Animal Experimentation.
2.4. Toxicity in adult zebrafish (ZFa)

The test was based on the [38] methodology with adaptations.
The Zfa (n = 6 group) were treated with chalcones (4,0 or 20 or
40 mg/kg; 20 mL; i.p). As a negative control, dimethyl sulfoxide
(DMSO 3%; 20 mL, i.p) was used. After 24, 48, 72, and 96 h, the
Fig. 1. Effect of chalcone 1 (A), chalcone 2 (B), chalcone 3 (C) and chalcone 4 (D) on the lo
Animals without treatment. Dzp – diazepam (40 mg/kg; 20 lL; i.p). Vehicle (DMSO 3
animals/group; ANOVA followed by Turkey (*p < 0.05, ***p < 0.001, ****p < 0.0001 vs. Naiv

3

number of animals killed was counted and the data were subjected
to statistical analysis, using the Trimmed Spearman–Karber
method with 95% confidence intervals, where the lethal dose to kill
50% was estimated (LD50) of animals.
2.5. Open-field test

Animals (n = 6/group) were pre-treated (20 mL; i.p) with 4 chal-
cones, in the same doses analyzed in Section 2.4. Diazepam (Dzp;
40 mg/kg) or vehicle (DMSO 3%) were used as positive and nega-
tive controls, respectively. After 30 min of treatment, animals were
comotor behavior of zebrafish (Danio rerio) in the Open-Field Test (0–5 min). Naive –
%) (20 lL; i.p) The values represent the mean ± standard error of the mean for 6
e; #p < 0.05; ##p < 0.01; ###p < 0.001, ####p < 0.0001 vs Vehicle or DZP).



Fig. 2. Anxiolytic effect of chalcone 1 (A), chalcone 2 (B), chalcone 3 (C) and chalcone 4 (D) in adult zebrafish in the light and dark test (0–5 min). Naive – Animals without
treatment. Dzp – diazepam (40 mg/kg; 20 lL; i.p). Vehicle (DMSO 3%) (20 lL; i.p) The values represent the mean ± standard error of the mean for 6 animals/group; ANOVA
followed by Turkey (*p < 0.05, ***p < 0.001, ****p < 0.0001 vs. Naive; ####p < 0.0001 vs Vehicle or DZP).
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added individually in glass Petri dishes (10 � 15 cm; with quad-
rants at the bottom of the plate), containing the same water from
the aquarium (Magalhães et al. [39]). A group without treatment
(Naive) was included. The number of line crossings was recorded
during 0–5 min.
2.6. Anxiolytic evaluation via GABAergic system

A glass aquarium (30 � 15 � 20 cm) was used with a light and
dark area filled with tap water pretreated with anti-chlorine, until
it reached a height of 3 cm. The animals (n = 6/group) were pre-
treated with chalcones, DZP (40 mg/kg; i.p) and 3% DMSO (see
2.5) and submitted to the light and dark test [40]. After 30 min
of treatment, animals were placed individually in the light zone
of the aquarium and the anxiolytic effect was quantified as time
(s) of permanence in the light zone during 5 min of analysis. A
naive group was included. The Gabaergic mechanism of action
was performed with the lowest effective dose. The animals
(n = 6/group) received Fmz (4.0 mg/kg; 20 mL; i.p) and after 15 min
they were treated with the lowest effective doses of chalcones: A
(4 mg/kg; i.p); B (40 mg/kg; i.p); C (4 mg/kg; i.p); and D (20 mg/
kg; i.p). Dzp (40 mg/kg; 20 mL; i.p), and vehicle (3% DMSO; 20 mL; i.
p) were included as controls. After 30 min of treatment, animals
were submitted to the light and dark test, described in the section.
4

2.7. Pentylenetetrazole-induced seizure (PTZ) via GABAergic system

The behavior related to seizure crises was analyzed in three
stages [41]. Stage I – dramatically increased swimming activity;
stage II – swirling swimming behavior; stage III – clonus-like sei-
zures, followed by loss of posture when the animal falls to one side
and remains immobile for 1–3 s. The doses of chalcones analyzed
in the anxiety test (Section 2.6) were also subjected to the anticon-
vulsant test. Diazepam (40 mg/kg; 20 mL; i.p) and vehicle (3%
DMSO; 20 mL; i.p) were included. After 30 min, the animals were
exposed to PTZ at 7.5 mM, and the behavior similar to seizure in
three stages was evaluated. The anticonvulsant action mechanism
was performed with the effective dose in the three stages. The ani-
mals (n = 6/group) received Fmz (4.0 mg/kg; 20 mL; i.p) and after
15 min, they were treated with the lowest effective doses at each
stage of seizure. Groups treated with Dzp (40 mg/kg; 20 mL; i.p),
and vehicle (3% DMSO; 20 mL; i.p) were included in the statistical
analysis of the data.
2.8. Molecular docking

2.8.1. Ligand preparation
The two-dimensional chemical structures of chalcones were

plotted from the plugins installed in the MarvinSketch � code



Fig. 3. Effect of flumazenil (Fmz) under the anxiolytic effect of chalcone 1 (A), chalcone 2 (B), chalcone 3 (C) and chalcone 4 (D) in the light and dark test. Dzp – diazepam
(40 mg/kg; 20 mL; i.p). Fmz – flumazenil (4 mg/kg; 20 mL; i.p). The values represent the mean ± mean error (E.P.M.) for 6 animals/group. ANOVA followed by Tukey
(****p < 0.0001 vs. naive or vehicle; ####p < 0.0001 vs. Fmz + Dzp or Fmz + chalcone 1 or Fmz + chalcone 2 or Fmz + chalcone 3 or Fmz + chalcone 4.
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(https://chemaxon.com/products/marvin) [42] being saved in .mol
format. The structures were optimized using the Avogadro code
[43] configured to use the force field of Merck Molecular Force
Field 94 – MMFF94 [44] with descending steepest algorithm, con-
figured to perform cycles of 50 interactions.

2.8.2. Protein preparation
The enzyme 4-aminobutyrate-aminotransferase inactivated by

gamma-vinyl GABA (PDB ID: 1OHW) was selected in the protein
database Protein Data Bank (https://www.rcsb.org/), deposited
Fig. 4. Effect of chalcone 1 (A), chalcone 2 (B), chalcone 3 (C) and chalcone 4 (D) on the
(40 mg/mL; 20 mL, i.p); Vehicle – 3% DMSO (20 lL; i.p). The values represent the mean ±
(**p < 0.01 ***p < 0.001, ****p < 0.0001 vs. Naive; #p < 0.05, ##p < 0.01; ###p < 0.001; ####p <

5

with a resolution of 2.30 Å, determined from X-ray diffraction, with
R-Value Free: 0.215, R-Value Work: 0.188 and R-Value Observed:
0.190 [45]. In the preparation of target enzymes, the residues pre-
sent in the structures were removed and the polar hydrogens were
added.

2.8.3. Molecular docking
For docking simulations, the AutoDock Vina code (version 1.1.2)

[46] was used. The grid box was defined with parameters of
120 Å � 106 Å � 126 Å, centered on the whole protein with the
pentylenetetrazole-induced seizure (3 stages) in adult zebra fish. Dzp – diazepam
standard error of the mean (E.P.M.) for 6 animals/group. ANOVA followed by Tukey
0.0001 vs. vehicle).

https://chemaxon.com/products/marvin
https://www.rcsb.org/


Fig. 5. Effect of flumazenil (Fmz) on the anticonvulsant action of chalcone 1 (4 mg/kg; i.p) in the pentylenetetrazole-induced seizure test in adult zebrafish. Fmz – flumazenil
(4 mg/kg; 20 mL; i.p). The values represent the mean ± standard error of the mean (E.P.M.) for 6 animals/group. ANOVA followed by Tukey (****p < 0.0001 vs. Naïve and vehicle;
####p < 0.0001 vs. Dzp + Fmz or Fmz + chalcone 1).
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dimensions (x, y, z) = (30.812, 55.924, 70.500), 100 independent
simulations being carried out obtaining 10 poses each. For the
selection of simulations with better poses, the simulations that
presented RMSD (Root Mean Square Deviation) value less than
2 Å and free bonding energy (DG) below �6.0 kcal/mol were used
as criteria [47,48]. The results were analyzed and visualized using
the codes Discovery Studio Visualizer and UCSF Chimera [49,50].
2.9. Statistical analysis

The results were expressed as mean ± standard deviation of the
mean, for in vitro tests (n = 3), as well as mean ± standard error of
the mean, for in vivo tests (n = 6/group). After confirming the nor-
mality and homogeneity distribution of the data, differences
between the groups were submitted to analysis of variance (One-
way ANOVA), followed by the Tukey test, using the GraphPad Prism
v software. 7.0. The level of statistical significance was considered
to be 5% (p < 0.05).
3. Results

3.1. Acute toxicity to adult zebrafish

None of the chalcones showed toxicity in adult zebrafish during
the 96 h of analysis (DL50 > 40 mg/kg).
6

3.2. Evaluation of locomotor activity

The number of line crossings during the open-field test showed
that the 3 doses of chalcone 1 reduced the animals’ locomotion
(**p < 0.01; ***p < 0.001; Fig. 1A). In contrast, only the 40 mg/kg dose
of chalcone 2 significantly reduced the number of crossbreeding
animals (****p < 0.0001, Fig. 1B). All doses of chalcone 3 also
reduced the number of crosses (***p < 0.001; ****p < 0.0001, Fig. 1C).
Only doses of 20 and 40 mg /kg of chalcone 4 reduced animals’
locomotion (*p < 0.5; ***p < 0.001, Fig. 1D). These results regarding
the synthesized chalcones were significantly similar (p > 0.05) to
the positive Dzp control (****p < 0.0001; 40 mg/kg) and significantly
different compared to the controls (naive and vehicle).

3.3. Anxiolytic activity via GABAergic system

All doses of chalcone 1 induced a significant increase
(****p < 0.0001; Fig. 2A) in the time spent by animals in the clear
area of the aquarium. However, only the dose of 40 mg/kg of chal-
cone 2 showed anxiolytic effect (****p < 0.0001; Fig. 2B) in the Claro
& Escuro test. The two highest doses of chalcones 3 and 4 showed
statistically anxiolytic effect, causing the animals to stay longer in
the clear zone of the aquarium (***p < 0.0001; ****p < 0.0001; Fig. 2C
and D). These results were significantly similar (p > 0.05) to the
positive Dzp control (****p < 0.0001; 40 mg/kg) and significantly dif-
ferent compared to controls (naive and vehicle).



Fig. 6. Effect of flumazenil (Fmz) on the anticonvulsant action of chalcone 2 (40 mg/kg; i.p) in the pentylenetetrazole-induced seizure test in adult zebrafish. Dzp – diazepam
(40 mg/mL; 20 mL, i.p). Fmz – flumazenil (4 mg/kg; 20 mL; i.p). The values represent the mean ± standard error of the mean (E.P.M.) for 6 animals/group. ANOVA followed by
Tukey (****p < 0.0001 vs. Naïve and vehicle; ##p < 0.01 ####p < 0.0001 vs. Dzp + Fmz or Fmz + chalcone 2).

Fig. 7. Effect of flumazenil (Fmz) on the anticonvulsant action of chalcone 3 (4 mg/kg; i.p) in the pentylenetetrazole-induced seizure test in adult zebrafish. Dzp – diazepam
(40 mg/mL; 20 mL, i.p). Fmz – flumazenil (4 mg/kg; 20 mL; i.p). The values represent the mean ± standard error of the mean (E.P.M.) for 6 animals/group. ANOVA followed by
Tukey (***p < 0.001, ****p < 0.0001 vs. Naïve and vehicle; ####p < 0.0001 vs. Dzp + Fmz or Fmz + chalcone 3).
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Fig. 8. Effect of flumazenil (Fmz) on the anticonvulsant action of chalcone 4 (40 mg/kg; i.p) in the pentylenetetrazole-induced seizure test in adult zebrafish. Dzp – diazepam
(40 mg/mL; 20 mL, i.p). Fmz – flumazenil (4 mg/kg; 20 mL; i.p). The values represent the mean ± standard error of the mean (E.P.M.) for 6 animals/group. ANOVA followed by
Tukey (**p < 0.01; ***p < 0.001, ****p < 0.0001 vs. Naïve and vehicle; ##p < 0.0001; ####p < 0.0001 vs. Dzp + Fmz or Fmz + chalcone 4).
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In the anxiety mechanism, all lower doses of chalcones that had
an anxiolytic effect were significantly similar to the effect of diaze-
pam (DZP; 40 mg/kg; ip), as there was a reduction in the anxiolytic
effect of each dose by the antagonist Fmz (####p < 0.0001,
Fig. 3A––D).

3.4. Pentylenetetrazole-induced seizures (involvement of the
GABAergic system)

All doses of chalcone 1 delayed the onset of ZFa seizure stages
(**p < 0.01, ***p < 0.001, ****p < 0.0001 vs naive and vehicle). Interest-
ingly, only the 40 mg/kg dose of chalcones 2 and 4 delayed the 3
stages of seizure (***p < 0.001 ****p < 0.0001 vs naive and vehicle)
(Fig. 4B and C). Results were similar to Dzp [(40 mg/kg; 20 mL; i.
p; ****p < 0.0001 vs naive and vehicle)]. The anticonvulsant effect
of the lowest effective doses in the 3 stages of chalcones A and C
(4 mg/kg; 20 mL; ip), B and D (40 mg/kg 20 mL; ip), and Dzp
(40 mg/kg; 20 mL; i.p) was reduced (##p < 0.01; ###p < 0.001;
####p < 0.0001) by Fmz in the three phases (Figs. 5–8).

3.5. Molecular docking GABA-AT/chalcones

To investigate the potential effect of chalcones on the GABAer-
gic system, docking simulations were performed on the gamma-
aminobutyric acid aminotransferase (GABA-AT) protein. After per-
forming molecular coupling simulations, all ligands showed affin-
ity energy within the ideal parameter, less than �6.0 kcal/mol
and RMSD (Root Mean Square Deviation) values less than 2 Å
8

[47,48]. Chalcones 1 and 2, coupled in the region of the vigabatrin
site (Fig. 9), showing interactions with residues PHE189, ARG192,
GLU270, and PHE1141 (Fig. 11). However, chalcone 1 showedmore
favorable interactions (shorter distances) with residues ILE72 and
TYR1138. Chalcones 3 and 4 coupled in a different region from
the vigabatrin site (Fig. 10), showing interactions with residues
GLU1060, PHE979, PHE351, and ILE862. Chalcone 4 showed a
favorable interaction with TYR859 (Fig. 11).
4. Discussion

Notably, as far as is known, this is the first evidence showing
anxiolytic and anticonvulsant effects of chalcones on the Central
Nervous System (CNS) against PTZ seizure model. All doses of
chalcones investigated in this study were subjected to an acute
toxicity test (96 h) and showed no toxicity, which provides evi-
dence for in vivo pharmacological tests, allowing the selection
of safe doses. Thus, an open-field test was performed to analyze
possible locomotor changes in the animals. Chalcones 1–4
altered zebrafish locomotion when administered intraperi-
toneally. The result is relevant because according to Gupta
et al. [51] this behavior is characteristic of drugs that act in the
CNS of the zebrafish. Changing locomotion could also be a seda-
tion response caused by the influence of the drug’s route of
administration, usually influenced by the time of action, inten-
sity, and duration [52]. In view of these questions, we investi-
gated the anxiolytic effect of chalcones synthesized by the
light and dark test.



Fig. 9. Schematic 2-D representations the gamma-aminobutyric acid aminotransferase (GABA-AT) complexes with chalcones 1 and 2.
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The scototaxis protocol (preferably light/dark) is used to assess
the anxiolytic effects of pharmacological agents [53]. The chal-
cones had an anxiolytic effect, as there was an increase in the time
the fish stayed in the clear area of the aquarium. When relating the
structure–activity of the molecules and the nature of the Cl sub-
stituents in the R1 and R2 positions of the synthesized chalcones,
it was evident that the substituent in the R1 position significantly
potentiates anxiolytic activity (chalcone 1; Fig. 2A), in comparison
to chalcone 2 (Fig. 2B), replaced only in R2, which differed from the
control group Dzp only in the highest dose (40 mg/kg) evaluated.
Substituent F in positions R1 and R2 influenced the anxiolytic
effect of chalcones, showing effectiveness in all doses evaluated
for substitution in position R1 (Fig. 2C), while chalcone with F in
position R2 was effective only in the two largest doses (20 and
40 mg/kg) (Fig. 2D). In the ranking of the most common functional
groups in bioactive molecules is fluorine atom (29.7%) and chlorine
(19.5%) [54] the same substituents present in our molecules.

Anxiety is regulated by the inhibitory neurotransmitter GABA
and this system is the target of BDZs and related drugs used to
treat anxiety disorders [55]. The mechanism of the chalcone’s anx-
iolytic effect was investigated by flumazenil, a GABAA antagonist.
After pre-treatment, flumazenil reduced the anxiolytic/sedative
effects of all analyzed chalcones, indicating that the anxiolytic
activity of the molecules acts through the GABA system. Studies
show that other series of synthesized chalcones also demonstrated
anxiolytic effects in rodents and zebrafish larvae [34,56], respec-
tively. Drugs that stimulate GABA receptors, such as BDZs and bar-
biturates, have anxiolytic and anticonvulsant effects by reducing
GABAA-mediated neuronal excitability, causing changes in the a1
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and c2 subunits of this receptor [57,58]. The antiepileptic effects
of drugs such as BDZs (anxiolytics) are accompanied by decreased
locomotor activity and sedation [59]. For this reason, the anticon-
vulsant potential of these chalcones has been investigated, which
alter the animals’ locomotion and have an anxiolytic effect.

Seizures were induced by PTZ, a chemoconvulsant used to
identify drugs effective in combating generalized seizures, in
particular molecules that increase GABAergic neurotransmission
[60]. In both zebrafish and rodent models, PTZ is the most char-
acterized chemical model [61]. In the CNS, it antagonizes GABAA

receptors, thus modifying the excitatory/inhibitory tone, which
culminates in acute seizures [62]. It is important to note that
several AEDs approved by the FDA (Food and Drug Administra-
tion) were initially discovered in PTZ models, suggesting some
translational relevance for these acute models [63]. In zebrafish,
it causes seizures in larvae [62] but several studies have
extended this model to adults [6,8]. Even the zebrafish model
was used recently to discover new insights into the first mecha-
nisms of epileptogenesis [64].

During studies of anticonvulsant compounds, important advan-
tages include the ability to conduct behavior analysis and elec-
troencephalographic (EEG) records on zebrafish in the larval
stage and adults [64–66]. Electroencephalographic records in the
zebrafish confirm PTZ proconvulsive activity, showing epileptiform
discharges similar to rodent and human EEG profiles [7,67]. These
spontaneous epileptiform discharges have characteristics of ampli-
tude, frequency, and duration that vary with time of exposure to
PTZ [65,68]. However, these analyses are outside the scope of this
article, but will be carried out later.



Fig. 10. Schematic 2-D representations the gamma-aminobutyric acid aminotransferase (GABA-AT) complexes with chalcones 3 and 4.
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The results showed that 1 and 3 chalcone (Fig. 4Aand C) was
effective in all doses as they increased the latency for the onset
of convulsive stages, like Dzp. Chalcones 2 and 4 (Fig. 4B and D)
also showed an anticonvulsant effect in one or two doses at each
stage. Blocking the anticonvulsant effect of chalcones and Dzp by
the antagonist flumazenil confirms previous findings and shows
that these molecules act through the GABA system [69–71].
Regarding the structure–activity of the molecules, we can see that
the presence of the two –Cl substituents provided chalcone with 1
effective anticonvulsant activity in all stages, when compared to
chalcone 2 with only one –Cl substituent. This observation was
also seen by Ibrahim [72] when analyzing the anticonvulsant activ-
ity of chalcone derivatives with a similar structure, and the deriva-
tive with –Cl substituent showed greater activity than the
derivative with substituent (–F), as well as verified with chalcones
3 and 4 (Fig. 4C and D).

Chalcones are subclasses of flavonoid compounds, which are
known to exert powerful anti-inflammatory effects on the brain
through the activity of free radical scavenging [72] or by direct
modulation of key components of the neuroinflammatory cascade.
Consequently, this neuroprotective activity can be considered to
explain the anxiolytic and anticonvulsant effect of these com-
pounds [72–74].

Epilepsy has an inflammatory process in its etiology and thus
studies have shown a protective effect of anti-inflammatories in
animal models [25]. The anti-inflammatory activity of substituted
chloro chalcone derivatives, with structures similar to chalcones
1 and 2 (Fig. 4A and B), showed anti-inflammatory activity and
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these effects were associated with the inhibition or suppression
of inflammatory mediators such as TNF-a, NO, COX-2, and inter-
leukins [75].

Structurally, all chalcones have 3 methoxy substituents (–
OCH3). When investigating the anticonvulsant activity of methy-
lated flavonoids by the PTZ-induced seizure model in zebrafish lar-
vae, [24] observed that unmethylated flavonoids such as NRG
(naringenin) and KFL (kaempferol) had only limited anticonvulsant
activity and the methylation of NRGs (forming naringenin 7-O-
methyl ether (NRG-M), and 40,7-naringenin dimethyl ether (NRG-
DM), had a clear impact on the result showing a better anticonvul-
sant effect. As with the previous methylated compounds, the
results show that the synthesized chalcones had an anxiolytic
effect and reversed all the stages of the seizure. It has been shown
that the methylation of flavonoids favors their metabolic stability
and membrane transport, where it facilitates absorption and posi-
tively affects their bioavailability [24,76].

The docking study can be used to illustrate the molecular inter-
action of new candidates at the protein–ligand interface. GABA-AT
(c-aminobutyric acid aminotransferase) is a validated target for
AEDs and, being catabolic in nature, its selective inhibition
increases GABA concentrations in the brain [77].

Docking studies were carried out to correlate structural changes
with biological activities. In this context, the molecular interac-
tions of chalcones with the protein GABA-AT (c-aminobutyric acid
aminotransferase), a validated target for AEDs, were analyzed and
their selective inhibition increases GABA concentrations in the
brain [49–51]. Regarding the chlorine substitutions in chalcones



Fig. 11. 2D map of the molecular interactions of the Gamma-aminobutyric acid aminotransferase (GABA-AT) reeptor whit the chalcones 1–4.
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1 and 2, in position R2, it was possible to observe that both inter-
acted with residues ILE72, PHE189, ARG192, PHE1141, GLU270.
However, there is a difference when there is a substitution in posi-
tion R1 (chalcone A). The insertion of a chlorine atom at the R1
position increases the number of interactions with the TYR D:
1138 residue and changes the ligand accordingly, enabling interac-
tions with the HIS44 and GLY438 residues. These interactions may
be responsible for enhancing the activity of chalcone A. In the case
of chalcone D, the replacement of fluorine (F) at position R2, causes
a conformational change that makes the interaction of chalcone D
difficult with the residue TYR D: 859 (>12 Å) and changes the
arrangement of the interaction with the residue PHE C: 351. This
new conformation hinders the interaction of chalcone D with the
protein target. TYR859 has an important modulatory role in the
activity, giving a greater effect to chalcone C, with 5.61 Å distance.
5. Conclusion

The synthesized chalcones presented anxiolytic and anticonvul-
sant effects, attenuating the convulsions induced by PTZ after pre-
treatment. The observed activities were completely antagonized by
flumazenil, which implies indications of the involvement of GABA
receptors. The interaction of the GABAA receptor will be confirmed
by binding/activity assays. The study demonstrated in relation to
the structure–activity, that the position of the substituents is
important in the intensity of the activities since the substitutions
in the positions R1 and R2 by chlorine potentiated the effects. It
was also observed that the molecule with fluorine substituent in
R1 showed efficacy in the lowest dose when compared to R2, that
is, the position of the substituent significantly influenced the activ-
ity modulation. The absence of toxicity and the action of these
compounds on the CNS evidence the pharmacological potential
11
of these molecules and, thus, insights are projected for the devel-
opment of new drugs.
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