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RESUMO

A arquitetura monolítica tradicional é construída como uma unidade lógica única que agrega

vários serviços para fornecer funcionalidades de negócios. No entanto, a arquitetura monolítica

pode apresentar as seguintes desvantagens: (i) dificuldade de compreender e modificar ao longo

do tempo; (ii) dimensionamento ineficiente dos recursos computacionais; e (iii) dificuldade

em aplicar pequenas modificações. Neste domínio, a arquitetura de microservices propõe uma

solução para dimensionar recursos computacionais de forma eficiente e resolver outros problemas

presentes na arquitetura monolítica. Embora a arquitetura de microservices ofereça inúmeros

benefícios, há custos associados à sua adoção, como desafios para executar processos de negócios

distribuídos entre diferentes microservices. Neste contexto, apesar de existir abordagens recentes

para a composição de microservices, como Medley e Microflows, essas soluções possuem

limitações em lidar com a localização dinâmica de microservices, pois exigem um registro prévio

dos microservices necessários para realizar composições. Além disso, essas soluções não estão

disponíveis tanto para a indústria quanto para a academia. Para preencher essa lacuna, esta

dissertação propõe Beethoven, uma plataforma leve para composição de microservices que é

composta de uma arquitetura de referência e uma DSL de orquestração baseada em processos de

negócios declarativos. A arquitetura de referência segue uma abordagem orientada a eventos

e foi instanciada usando o modelo de atores e o ecossistema fornecidos pelo Spring Cloud

Netflix. Para demonstrar a viabilidade da plataforma de Beethoven, foram desenvolvidas duas

aplicações de exemplo. Além disso, para investigar a avaliação de desempenho da plataforma,

um quasi-experimento controlado foi conduzido. Todos os artefatos produzidos como parte dessa

dissertação estão disponíveis no GitHub.

Palavras-chave: Arquitetura Orientada a Eventos. Arquitetura de Referência. Composição de

Microservice. Orquestração.



ABSTRACT

The traditional monolithic architecture is constructed as a single logic unit that aggregates

several services to provide business functionalities. However, monolithic applications may

have the following drawbacks: (i) difficult to understand and modify over time; (ii) inefficient

dimensioning of computational resources; and (iii) difficulty in applying small modifications. In

this realm, the microservices architecture proposes a solution for efficiently scaling computational

resources and solving other problems present in the monolithic architecture. Although the

microservices architecture offers numerous benefits, there are costs associated with its adoption

such as challenges to execute business processes distributed across different microservices.

In this context, although there exist some recent approaches for microservice composition,

such as Medley and Microflows, these solutions have limitations in dealing with the dynamic

location of microservices since they require a prior registration of the required microservices to

perform compositions. Besides, these solutions are not available for both industry and academic

communities. To fill that gap, this dissertation proposes Beethoven, a lightweight platform for

microservice composition that is composed of a reference architecture and an orchestration DSL

based on declarative business processes. The reference architecture follows an event-driven

design approach and has been instantiated by using the actor model and the ecosystem provided

by Spring Cloud Netflix. In order to demonstrate the feasibility of the Beethoven platform,

two example applications have been developed. In addition, to investigate the performance

assessment of the Beethoven platform, a controlled quasi-experiment has been conducted. All

artifacts produced as part of this dissertation are available on GitHub.

Keywords: Event-driven Architecture. Reference Architecture. Microservice Composition.

Orchestration.
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1 INTRODUCTION

The traditional monolithic architecture is constructed as a single logic unit that

aggregates several services, which share the same computational resources (e.g., memory space,

CPU processing, and database), in order to provide business functionalities. Applications

based on the monolithic architecture may have a large number of cross-cutting concerns such

as logging, security features, and exception handling. Those cross-cutting concerns may be

addressed by aspect-oriented programming (KICZALES et al., 1997) in order to increase the

software modularity. In particular, when cross-cutting concerns are running through the same

application, it is straightforward to apply the concepts of aspect-oriented programming in order

to isolate them. In the monolithic architecture, there are also performance advantages in terms of

service communication, which is a simple local method invocation, since all services share the

same computational resources.

However, three major drawbacks can be mentioned when using the monolithic

architecture: (i) difficult to understand and modify over time; (ii) inefficient dimensioning

of computational resources; and (iii) difficulty in applying small modifications. In particular,

monolithic applications may become difficult to understand and modify over time, due to the

increase in number and complexity of their services. Another complicating factor is how to

scale efficiently monolithic applications. For instance, if a service in a monolithic application

requires more computational resources, it will be necessary to scale the entire application

including all services, causing an unneeded allocation of computational resources. Moreover,

in monolithic applications, even small modifications impose rebuilding and redeploying the

complete application.

In this realm, the Microservices Architecture (MSA) arises as a novel architectural

style to develop a single application as a collection of independent, well-defined, and inter-

communicating services (NADAREISHVILI et al., 2016). Microservices are autonomous and

communicate to each other through lightweight mechanisms, often HTTP resource APIs (LEWIS;

FOWLER, 2014). In addition, the microservice architecture proposes a solution for efficiently

scaling computational resources and solving other problems, which are mentioned in the previous

paragraph, present in the monolithic architecture. Since microservices can be individually scaled,

they provide an efficient manner to allocate computational resources, enabling flexible horizontal

scaling in cloud environments. For this reason, the microservices architecture style has been

used as an alternative to the traditional monolithic architecture in companies such as Amazon,
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Netflix, and LinkedIn (VILLAMIZAR et al., 2016).

In addition to scalability, the adherence of the microservice architecture style pro-

vides the following benefits: free choice of technologies, easy replacement, resiliency, continuous

delivery, and facilitated deployment (NEUMAN, 2015; WOLFF, 2016). In particular, microser-

vices offer free technological choice because the communication among them occurs through

lightweight protocols. Thus, there is no demand for two different microservices to adopt the

same set of technologies in order to establish a communication. As result, different programming

languages, database paradigms, and other technology stacks can be used to develop a collection

of microservices minimizing the component intercommunication risks for a MSA-based applica-

tion (WOLFF, 2016). In another perspective, even if the replacement of a specific microservice

caused a temporary failure, a MSA-based application can continue to operate and recover the

previous microservice version, thus reducing the risk associated with inadequate microservice

updates. Furthermore, since microservices can be deployed independently, they are also advanta-

geous for continuous delivery. Thereby, it is easy to ensure a secure deploy in the microservices

architecture style, for example, by running different versions in parallel (WOLFF, 2016).

1.1 PROBLEM

Although the MSA offers numerous benefits over the monolithic architecture, there

are costs associated with its adoption such as challenges to execute business processes that

are distributed across different microservices. In particular, accessing a microservice through

its API using a communication protocol (e.g., HTTP) is straightforward. However, as the

software complexity increases, there are issues to manage business processes that extend beyond

the boundaries of an individual microservice (NEWMAN, 2015). Therefore, the microservice

architectural style faces challenges such as microservices cooperation in order to provide complex

and elaborated business processes.

In order to illustrate the problems related to microservice composition and explain

its importance for MSA-based applications, consider the following scenario: a MSA-based

application, responsible for controlling book lending, that is composed of a set of microservices

in which each microservice is responsible for running only one business functionality. In this

application, there are distinct microservices to perform book catalog management, employee

management, and library user management. However, the main functionality of this application,

which is the business process for performing book lending, requires a collaboration of different
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microservices in order to be completed.

To address this issue, there are two approaches that may be used for (micro) services

composition: orchestration and choreography. The former refers to a centralized business process

that coordinates a series of service invocations, like the conductor in an orchestra, while the latter

represents decentralized and cooperative service coordination, like dancers finding their way and

reacting to others around them in a ballet (NEWMAN, 2015).

In order to utilize choreography as a service composition strategy, a microservice

responsible for performing a task of the business process must process and publish events related

to its execution. In addition, it is required to aggregate a broken to the MSA-based application for

transmitting the events generated by microservices. This approach is recommended for relatively

simple event processing flow (RICHARDS, 2015b). However, for a complex business process

that is composed of multiple steps and requires some level of management to process complex

data flows, the orchestration strategy is recommended (RICHARDS, 2015b).

Additionally, it is also possible to accomplish service composition using a specific

type of service present in SOA-based applications named composed service. By definition, a

composed service is a special type of service that accesses and depends on other services to pro-

vide business functionalities (JOSUTTIS, 2007). However, in the context of MSA, the concept of

composed service violates one of the main principles proposed by the microservices architectural

style (LEWIS; FOWLER, 2014): componentization via services. Componentization in MSA

is implemented at the level of services that must have only a single responsibility (LEWIS;

FOWLER, 2014). For this reason, in MSA-based applications, it is recommended to use service

composition strategies (orchestration or choreography) to execute business processes that require

the collaboration of different microservices.

In the early 2000s, different approaches were proposed to address web services

composition based on Service-Oriented Architecture (SOA) using either orchestration or chore-

ography (MILANOVIC; MALEK, 2004). However, SOA-based approaches for web services

composition fail in the context of microservices (YAHIA et al., 2016) because they require

components such as an Enterprise Service Bus (ESB) and Web Services Description Language

(WSDL) in order to compose services (XIAO; WIJEGUNARATNE; QIANG, 2016). Nonethe-

less, different from SOA-based approaches, heavyweight middleware and service description are

not part of applications that follow the principles of the microservice architectural style (XIAO;

WIJEGUNARATNE; QIANG, 2016).

Although there exist some recent approaches for microservice orchestration, such as
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Medley (YAHIA et al., 2016) and Microflows (OBERHAUSER, 2016), those solutions have

limitations in dealing with the microservices dynamic location since they require a previous

registration of the microservices. For instance, in order to orchestrate microservices using Medley

or Microflows, it is required to previously describe and register each microservice that will be

part of the orchestration. As consequence, new microservices that have not been described and

registered previously cannot be used during the microservice composition. In other words, those

solutions compromise the scalability of MSA-based applications in case of new microservices

need to be composed at runtime. Besides, those solutions are not available for both industry and

academic communities, which may compromise their reusability, extensibility, and experimental

reproducibility (MUNAFÒ et al., 2017).

Another complicating factor is how to express microservice composition. In order to

address this concern, it is necessary mechanisms to specify data flow processes. For instance,

workflows are remarkable alternatives to properly represent the possible data flows (NURCAN,

2008). However, due to the complexity and dynamicity of MSA-based applications, workflows

are often either too simple, thus unabling to handle the variety of situations that occur, or they are

too complex, trying to model every imagined possible situation but being hard to maintain. In

both cases, they may cause several problems to the microservices applications. To address these

limitations, declarative business processes arise as a paradigm shift from traditional workflow

approaches (GOEDERTIER; VANTHIENEN; CARON, 2015).

To fill that gap, this dissertation proposes Beethoven, a lightweight platform for

microservice composition that eases the creation of complex applications using microservice

data flows. The platform is composed of a reference architecture and an orchestration Domain-

Specific Language (DSL) based on declarative business processes that enable software engineers

to express microservice orchestration. The reference architecture follows an event-driven design

approach and has been instantiated by using the actor model and the ecosystem provided by

Spring Cloud Netflix. In order to validate and demonstrate the feasibility of the Beethoven

platform, two example applications have been developed. In addition, in order to investigate the

performance assessment of the execution of microservice orchestration by using the Beethoven

platform, a controlled quasi-experiment has been conducted. The source code of the Beethoven

platform , the example applications, and the quasi-experiment are available on GitHub1,2,3,4.
1 <https://github.com/davimonteiro/beethoven>
2 <https://github.com/davimonteiro/partitur>
3 <https://github.com/davimonteiro/crm-msa-example>
4 <https://github.com/davimonteiro/performance-evaluation>

https://github.com/davimonteiro/beethoven
https://github.com/davimonteiro/partitur
https://github.com/davimonteiro/crm-msa-example
https://github.com/davimonteiro/performance-evaluation
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1.2 OBJECTIVES

The following subsections describe the general and specific objectives of this disser-

tation.

1.2.1 General objective

The main objective of this dissertation is to propose an event-driven lightweight

platform that is responsible for running declarative business processes in order to orchestrate

microservices. Thus, as a result of the execution of such processes, the platform must perform

microservices composition in order to offer elaborate functionalities for MSA-based applications.

1.2.2 Specific objectives

In order to achieve the general objective, the following specific objectives must be

accomplished:

a) Design and specify systematically an extensible and scalable event-driven lightweight

reference architecture for microservice orchestration;

b) Design and implement an orchestration DSL based on declarative business

processes in order to provide a mechanism for specifying data or event flows;

c) Recognize the viability of the Beethoven platform by instantiating a concrete

architecture based on the specification of the reference architecture;

d) Verify the feasibility of the Beethoven platform and its concrete architecture

using an example application that has been developed by the author;

e) Confirm the feasibility of the Beethoven platform and its concrete architecture

using an example application that has not been developed by the author;

f) Evaluate a possible overhead that the Beethoven platform and its concrete archi-

tecture may produce during microservice orchestration.

1.3 CONTRIBUTIONS

The main contributions of this dissertation are: (i) the microservice composition

platform, named Beethoven, and an orchestration DSL, named Partitur, that enables application

engineers to express microservices orchestration from an abstract level; (ii) a concrete imple-

mentation of the reference architecture using the Spring Cloud Netflix ecosystem, called Spring
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Cloud Beethoven; (iii) an example application to demonstrate how the proposed platform can

be used in a real example; (iv) a second example application that is an orchestrated version

of existing reference application for microservices-based applications; and (v) a controlled

experiment that has been conducted in order to evaluate the possible overhead produced by the

proposed platform. All artifacts of this dissertation are available to the scientific community on

GitHub.

1.4 OUTLINE

The remaining text of this dissertation is organized as follows:

a) Chapter 2 presents the theoretical framework necessary for the understanding of

this dissertation. To this end, the chapter presents an overview and a comparison

between SOA and the microservice architectural style. Then, it describes the

service composition strategies (orchestration and choreography) that can be used

in both SOA and MSA. After that, it introduces an overview of declarative

business processes;

b) Chapter 3 discusses the main related work in terms of composition languages,

web-services composition, and microservice composition. At the end of this

Chapter, it is summarized and highlighted a comparison between each related

work in terms of contribution type, composition strategy, architectural style, open

source, and evaluation type;

c) Chapter 4 presents an event-driven platform named Beethoven for microservices

orchestration using declarative business processes. The Beethoven platform is

composed of a reference architecture, a concrete architecture and an orchestration

DSL;

d) Chapter 5 presents the instantiation of the reference architecture that has been

specified in Chapter 4;

e) Chapter 6 presents the evaluations that have been conducted in order to provide

empirical evidence for confirming the benefits offered by the Beethoven platform

f) Chapter 7 summarizes the dissertation and restates its contributions. It outlines

future work and concludes with a discussion on longer-term perspective and

further research directions.
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2 BACKGROUND

This chapter presents the theoretical framework necessary for the understanding of

this dissertation. To this end, Section 2.1 presents the concepts, architectural principles, and

service classification present in SOA. Next, Section 2.2 introduces the state of the art, principles,

best practices, and patterns related to the microservices architecture style. After that, Section 2.3

compares the two architectural styles, SOA and MSA, and highlights their main similarities and

differences. Then, Section 2.4 describes the service composition strategies (orchestration and

choreography) that can be used in both SOA and MSA. Finally, Section 2.5 introduces a global

overview of declarative business processes.

2.1 SERVICE-ORIENTED ARCHITECTURE

SOA is a paradigm and an architectural style for building software applications that

are organized as a set of capabilities often distributed across a network and possibly under the

control of different ownership domains (LASKEY; LASKEY, 2009; DUGGAN, 2012). By

using organized capabilities, it is possible to provide reusable solutions modeled as services

to business problems that can be encountered by an individual or organization. Therefore,

SOA promotes loose coupling between software components (services) so that they can be

reused. In addition, the concept of SOA includes a set of desirable design characteristics for

promoting interoperability, reusability, and organizational agility as well as a service-oriented

business process modeling paradigm (CHANNABASAVAIAH; HOLLEY; TUGGLE, 2003).

The SOA paradigm can be used to realize and maintain business processes developed as large

distributed systems that are usually heterogeneous to provide high interoperability (SANDERS;

HAMILTON JR.; MACDONALD, 2008).

2.1.1 Architectural components

Software architecture defines the structure of a computing system and comprises

software elements, the externally visible properties of those elements, and the relationships

among them (BASS; CLEMENTS; KAZMAN, 2012; SHAW; GARLAN, 1996). In SOA,

the software architecture of a system is decomposed into well-defined, self-contained, and

independent services that can be consumed by clients in different applications or business pro-

cesses (PAPAZOGLOU; HEUVEL, 2007). A service can be understood as an abstraction of a
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business capability that provides interfaces to access one or more functionalities. Therefore, in

the development of service-oriented applications, all functionalities are provided as services (PA-

PAZOGLOU; HEUVEL, 2007). The basis for SOA applications is formed by three architectural

components: service provider, service consumer, and service registry (HUHNS; SINGH, 2005;

PAPAZOGLOU; HEUVEL, 2007). Each SOA component is described below and the interaction

between them is represented in Figure 1.

Figure 1 – The basic of Service Oriented Architecture

Source: Papazoglou and Heuvel (2007).

Service provider: Providers are software entities that create services and register them in the

service register. Service providers are responsible for publishing a description of the

created services using a standardized protocol such as WSDL in public and centralized

registries. Thus, by registering services, service clients will be able to find the descriptions

of the services in order to use the functionalities provided by the service provider.

Service requester or service consumer: A service consumer represents the software entity

that uses the services created by a service provider. In order to locate and use the services

provided by a service provider, a service consumer must access the service register to find

and retrieve the necessary information for interacting with services. In practice, a service

consumer uses Universal Description, Discovery and Integration (UDDI) in order to locate

the service provider.

Service broker, service registry or service repository: A service register represents the soft-

ware entity that both service provider and service consumer interact in order to establish

a connection using exchanging data protocol such as Simple Object Access Protocol
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(SOAP). The main functionality of a service register is to provide the information about

the available services to any potential consumer. If the requested service is available, the

service register provides the consumer a contract (service description) and an endpoint

address to the consumer service.

2.1.2 Service taxonomy

In the context of SOA-based applications, a service may have different attributes,

proposes, and perform different functions. As consequence, there are different manners to

classify SOA-based services. Josuttis (2007) classifies them into the following categories:

Single, basic, or atomic services: Atomic services represent a fundamental business operation

and should provide a minimal business functionality. In addition, these services should

be autonomous and self-contained. For this end, atomic services must not depend on

other services in order to provide a business functionality. There are two subcategories of

atomic services: data and logic. The former is responsible for reading or writing data from

or to databases. The latter is responsible for implementing fundamental business rules,

processing input data, and returning correspondent results.

Composite or composed services: Composed services are typically services that access and

depended on multiple services to provide business functionalities. For this reason, compos-

ite services operate in a level higher than atomic services since they required a collection

of services, atomic or composed, in order to execute business processes.

Process services: These services represent business processes that execute in a long period of

time and involve some type of human interaction. Thus, process services can be understood

as a type of composite service. Although there are similarities in relation to composite

services, a process service usually stores state that remains stable over multiple calls. In

other words, process services are stateful.

2.1.3 SOA instantiation

In order to instantiate the concepts present in SOA, there are two central elements

that may be used: web services and ESB. A web service is defined as a standardized way of

integrating web-based applications using interoperable standards Machine-to-Machine (M2M)

such as eXtensible Markup Language (XML), SOAP, WSDL, and UDDI over an Internet

protocol backbone (ALONSO et al., 2004). These standards provide a common approach for
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defining, publishing, and using web services. For instance: (i) XML is used to represent data;

(ii) SOAP is used to transfer data; (iii) WSDL is used for describing the services available; (iv)

UDDI is used for listing available services.

ESB is a software infrastructure that implements communication patterns over differ-

ent transport protocols in order to support interaction between distributed services in a SOA-based

application (PAPAZOGLOU, 2003; JOSUTTIS, 2007). Its purpose is to provide interoperability,

connectivity, data transformation, and intelligent routing combined with some additional services

such as security, monitoring and logging, service management and so on (JOSUTTIS, 2007).

Figure 2 illustrates an example of ESB that acts as a mediator layer between service providers

and service consumers. The main rule of an ESB is to provide interoperability between different

platforms and programming languages. In this case, for web services, SOAP is used as a standard

format to which all platforms, services, and programming languages must use.

Figure 2 – An ESB providing point-to-point connections

Source: Josuttis (2007).

2.2 MICROSERVICES

MSA is an architectural style for developing a single application as a collection of

small and autonomous services, each running in its own process and communicating through

lightweight mechanisms, often an Hypertext Transfer Protocol (HTTP) resource Application

Programming Interface (API) (LEWIS; FOWLER, 2014). Microservices are built around

business capabilities using a concept from Domain-Driven Design (DDD) (EVANS, 2003)
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named bounded context in order to delimit their business functionalities and associated data. In

addition, a microservice can be understood as a small and a single responsibility application

that can be independently deployed, scaled, and tested (THöNES, 2015). By adopting the

microservices architecture, developers can engineer applications that are composed of multiple,

self-contained, and portable components deployed across numerous distributed servers (FAZIO

et al., 2016).

In order to motivate the use of MSA, it is important to compare it to the monolithic

style. A monolithic application is a single software unit that aggregates all necessary computa-

tional resources to execute all business functionalities in a particular domain. For instance, in a

monolithic-based application, if one service requires more computer resources in order to be exe-

cuted, it will be necessary to scale the entire application. In addition, in monolithic applications,

any modifications impose rebuilding and redeploying a new version of the application.

In software engineering, system modularization can be defined as a process of group-

ing parts of a program and, when appropriate, removing redundancies (SOMMERVILLE, 2010).

Although it is possible to build monolithic applications without using software modularization,

as shown on the left side in Figure 3, monolithic applications can and should apply the principles

and best practices of software engineering such as modularization (HAYWOOD, 2017a; HAY-

WOOD, 2017b) in order to achieve attributes such as maintainability, low coupling, and high

cohesion as shown by the middle image in Figure 3. However, MSA goes one step further by

isolating each microservice into an independent application that can be run into virtual containers

Docker1 (BERNSTEIN, 2014) as shown on the right side in Figure 3.

As a consequence of the limitations imposed by the monolithic architecture and

the benefits brought by the microservices architecture, companies have adopted MSA as an

alternative to the monolithic architecture (MAZLAMI; CITO; LEITNER, 2017). In the scientific

community, researchers have focused their efforts on strategies, methodologies, and models

for migration from monolithic applications to MSA-based applications (MAZLAMI; CITO;

LEITNER, 2017; ESCOBAR et al., 2016; KECSKEMETI; MAROSI; KERTESZ, 2016).

According to Richards (2015a), MSA has a limited service taxonomy that categorizes

microservices into two groups: infrastructure and business. The former group encloses more

generic and reusable microservices that support nonfunctional tasks such as Discovery Services,

API Gateway, Load Balancer, and Configuration Services. The latter group, also known as

functional microservices, contains microservices that support specific business operations or
1 <https://www.docker.com/>

https://www.docker.com/
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Figure 3 – From monolithic applications to microservices

Source: Elaborated by the author.

functions. Figure 4 illustrates an example of MSA-based application that follows some of the

patterns and best practices that are proposed by both academic literature (MONTESI; WEBER,

2016) and industry. On the top of Figure 4, it is illustrated different clients that access the

MSA-based application. In the middle of Figure 4, it is shown the infrastructure microservices

responsible for supporting the business microservices. Finally, on the bottom of Figure 4, it is

shown the business microservices in which each one accesses its own database.

2.2.1 Principles of the microservice architecture style

For some researchers, MSA is a subset of SOA or a special approach to constrain any

SOA-based application to be successful (PAUTASSO et al., 2017a; PAUTASSO et al., 2017b).

Although there is no formal definition of the microservices architectural style, Lewis and Fowler

(2014) describe a set of principles for this architecture style. Since a software architectural style

defines a set of principles that should be used as constraints on a software architecture (PERRY;

WOLF, 1992; GARLAN; SHAW, 1994), the following principles should be implemented in

MSA-based applications.

Componentization via services - Componentization in software development is

a decomposition methodology used to build pieces of software that are easy to execute, test,

replace, and deploy (KAUR; MANN, 2010). In microservices application, componentization is

performed at the level of services that must have only a single responsibility. Each microservice

component encapsulates all the resources required to execute and expose interfaces to other

microservices, ensuring loose coupling among the microservices.
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Figure 4 – The microservice architecture

Source: Elaborated by the author.

Organised around business capability - Any organization that designs software

systems will produce application following its organizational structure (CONWAY, 1968). In

other words, application code and teams that are organized around functional areas focus on

specialized teams such as user experience teams, server-side logic teams, and database teams. In

the context of microservices applications, that organizational structure can impact negatively on

the development of new features or requirements changes. For this reason, Lewis and Fowler

(2014) argue that the development of a microservice must be performed by cross-functional

teams that include user-interface, persistent storage, and any external collaborations.

Products not projects - A project can be defined as a temporary endeavor under-

taken to create a unique product or service (INSTITUTE, 2013). However, in the microservices

realm, Lewis and Fowler (2014) advocate that the project model as a temporary effort should be

avoided. Instead, microservice engineers should adopt the philosophy that the microservice team

should own a product over its full lifetime. More specifically, the development team must take

full responsibility for the software in production.

Smart endpoints and dumb pipes - A microservice must have all the logic and

resources required to function independently. Therefore, Lewis and Fowler (2014) advocate
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that a microservice is a smart endpoint. The communication mechanism among the microser-

vices (smart endpoint) must follow the philosophy of dumb pipes over a lightweight protocol.

Dumb pipes mean that communication mechanisms should act as a message router only. Thus,

for instance, the logic for the operation of a microservices should not be transferred to its

communication mechanism.

Decentralised data management and governance - The flexibility to adopt dif-

ferent technologies for each microservice is mentioned by Wolff (2016) as one of the main

advantages related to the microservice architecture. By using decentralization governance, mi-

croservice engineers can address issues using the most appropriate technologies since there is no

contract to a single technology as in monolithic applications. Unlikely a monolithic application,

in which there is a centralized database, data in microservices applications is decentralized and

distributed between each microservice. Decentralized data management provides a framework

to define boundaries between microservices since each microservice is a solution to a business

capability and works with a conceptual data model (SHADIJA; REZAI; HILL, 2017).

2.2.2 Microservice patterns and best practices

MSA arises as an alternative to the monolithic architectural style by providing

benefits such as independent deployments and development, small and focused teams, fault

isolation, decentralized governance, and decentralized data management (FRANCESCO, 2017;

FRANCESCO; MALAVOLTA; LAGO, 2017). However, in order to exploit these benefits,

a MSA-based application should implement the following patterns and best practices as an

infrastructure microservices layer as presented in Figure 4.

Circuit Breaker Pattern — In MSA, isolated failures of a single microservice may

cascade beyond its boundaries and, thereby, bring the entire microservices application down. For

instance, on the occasion that a microservice is unavailable, then any microservice that depends

on the unavailable microservice may face problems (e.g., long timeouts). If this problem is

not addressed and propagates to other microservices, the health of the MSA-based application

will be compromised. In order to prevent that problem, known as the cascading problem, the

microservice consumer should use the Circuit Breaker Pattern (NYGARD, 2007) when calling

the microservice provider. In this pattern, each microservice must use an internal circuit breaker.

Thus, if the microservice provider is available, then the circuit will remain closed (closed circuit

state). However, when a microservice provider becomes unresponsive after a number of failure
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responses, the circuit in the microservice consumer assumes that the provider may be unavailable

and should stop waiting for it (open circuit state) (MONTESI; WEBER, 2016). After a specific

timeout, the circuit will verify if the microservice provider is available and, in case of a successful

attempt, the state will be changed to the closed circuit state. Otherwise, the state will be modified

to open circuit. Thus, the Circuit Breaker pattern is an effective mechanism to combat long

timeouts and cascading failures.

API Gateways Pattern — Microservices application can serve different clients such

as web client, mobile client, and Internet of Things (IoT) devices. Each client may have different

needs and restrictions. For instance, in a web store application, when requesting details about

a product, the mobile client needs less information than a web client due to its connection and

processing limitations. To address this problem, the API Gateway pattern provides a single entry

point to access the microservices APIs. In addition, an API Gateway provides functionalities for

publishing multiple APIs, each one dedicated to a different set of clients (MONTESI; WEBER,

2016).

Service Discovery Pattern — As a consequence of the dynamic aspect of a mi-

croservice that can be deployed, replicated or reallocated during the application execution, it is

not possible to determine the microservice location (endpoint) at design time. To address the

service location problem, the Service Discovery Pattern is used to determine the location of a

service instance at runtime by using a service registry, which can be used by other components

to retrieve binding information about other components (MONTESI; WEBER, 2016). In the

Service Discovery pattern, microservices register themselves in a service registry in order to

publish their locations. There are some services that implement the Service Discovery pattern

such as Consul2, Apache ZooKeeper3, and Netflix Eureka4.

Externalized Configuration — The MSA typically integrates a variety of loosely

coupled infrastructure microservices that must run in multiple environments (development, test,

production) without modifying or rebuilding the microservices during the exchange of environ-

ments. Due to technology heterogeneity, configuring each microservice to provide the basis for

running and multiple environments might be time-consuming. A possible solution to address

microservices configuration is to externalize all configuration from a microservices application,

including database properties (URL, credentials, tuning parameters), specific microservices
2 <https://www.consul.io>
3 <http://zookeeper.apache.org/>
4 <https://github.com/Netflix/eureka>

https://www.consul.io
http://zookeeper.apache.org/
https://github.com/Netflix/eureka
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configuration, network configuration, and among others 5. Therefore, during the microservices

initialization, all configurations are read from an external source (e.g., OS environment variables

or a Git Server). For instance, Spring Boot externalized configuration 6 allows microservices

engineers to externalize configuration that can be read from a variety of external sources includ-

ing properties files, YAML Ain’t Markup Language (YAML) 7 files, environment variables and

command-line arguments.

Client Side Load Balancer Pattern — A load balancer that is achieved at the client

side for routing requests across servers, rather than at the server side of a client-server network.

In this model, each client service regularly receives a load balance list of available services and

routes requests using a particular load balancing algorithm (e.g., Round Robin or Random). In

the event of a service failure or non-responsive service, the unavailable service can be removed

from the load balance list and redistribute the load. The client service’s list then is updated when

the list is received during subsequent access. Netflix Ribbon8 is an implementation of the Client

Side Load Balancer Pattern.

2.3 SOA VS. MICROSERVICES

SOA and MSA are similar concepts since they both are architectural styles for build-

ing applications that are decomposed into services available over a network and integrated across

heterogeneous platforms. Furthermore, in both approaches, the system software architectures

share the same purpose: decomposing large systems into well-defined services (componenti-

zation via service). Thereby, the difference between SOA and MSA is a controversial subject

among the industrial and scientific communities since both styles use services as architectural

components in order to implement business functionalities (RICHARDS, 2015a). However, in

order to achieve the common purpose, each architectural style follows a different path.

In terms of communication mechanisms and governance model in SOA, the applica-

tion architecture is designed to decompose a large application into simple services, emphasizing

service integration with intelligent routing mechanisms (CERNY; DONAHOO; PECHANEC,

2017; CERNY; DONAHOO; TRNKA, 2018). The intelligent routing mechanism provides

a centralized governance model that is capable of routing messages, especially dealing with

technical aspects, such as load balancing and failover. In addition, intelligent routing, from a
5 <http://microservices.io/patterns/externalized-configuration.html>
6 <https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html>
7 <http://yaml.org/>
8 <https://github.com/Netflix/ribbon>

http://microservices.io/patterns/externalized-configuration.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
http://yaml.org/
https://github.com/Netflix/ribbon
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business point of view, might also provide different ways of routing messages. For instance, in

order to implement business rules, intelligent routing might process messages that are assigned

to different priorities or must be processed according to their content (so-called content-based

routing). Thereby, intelligent routing mechanisms presented in SOA might result in simplistic

endpoints and complex communication channels.

In contrast, since a microservice is a separate codebase that can be deployed inde-

pendently and is responsible for persisting its own data, MSA implies that the decomposition

strategy used is to separate large applications into smart and independent services while consid-

ering simple routing mechanisms (BALALAIE; HEYDARNOORI; JAMSHIDI, 2016), with a

decentralized governance model. According to Salah et al. (2016), the main difference between

SOA and MSA is the elimination of the service bus (a central governance entity). As a result,

by maintaining dumb pipes to communicate and moving the intelligence and control to the

endpoints, MSA leads microservices into higher autonomy and decoupling because they do not

need to agree on global level contracts (CERNY; DONAHOO; TRNKA, 2018).

In the context of component sharing, SOA and MSA are inherently different since

each architectural style emphasis a different concept. According to Richards (2015a), SOA is

based on the principle of reusability that is achieved by the idea of share-as-much-as-possible

architecture approach. The idea of SOA is to mitigate redundancies in business functionality

through the creation of shared software components (services and database) for increasing

efficiency and cost saving. MSA, on the other hand, is based on idea of share-as-little-as-

possible. In particular, MSA are built on the concept from DDD named bounded context. In

terms of microservices, a bounded context delimits the functionalities and associated data of

a particular service in order to model single closed entity with minimal dependencies. The

different goals and philosophies in component sharing leads to different focuses when designing

and implement services.

The implementation of systems based on SOA or MSA can support different commu-

nication protocols and data-interchange formats. In practice, the same communication protocols

or data-interchange formats used by SOA-based applications can be applied in MSA-based

applications and vice versa. However, according to Josuttis (2007), SOA has used the following

web services standards to realize the web services approach: (i) XML for describing data formats

and data types; (ii) HTTP as communication protocol; (iii) WSDL for defining service interfaces;

(iv) SOAP for defining the web service protocol; (v) UDDI for registering and finding services.

In contrast, according to Xiao, Wijegunaratne, and Qiang (2016), MSA has used: (i) Represen-
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tational State Transfer (REST) or Advanced Message Queuing Protocol (AMQP) as a SOAP

alternative; (ii) HTTP as communication protocol; (iii) JavaScript Object Notation (JSON) for

representing data.

The implementation of SOA concepts centralizes various infrastructure services

(e.g., communication, security, composition, management) into a single architectural component

named ESB. Although ESB is one of the most important components of SOA, it is a single

point of failure that can bring down all the infrastructure service in a SOA-based application.

Moreover, several ESB implementations (e.g., IBM WebSphere ESB9, Oracle Service Bus10, and

SAP Process Integration11) use proprietary protocols to provide communication between web

services. Consequently, such ESB providers create a vendor lock-in in their solutions preventing

the reuse of web services on other providers.

In contrast, MSA decomposes centralized services presented in an ESB into several

independent microservices where each microservice is bounded by its responsibility. For instance,

as shown in Section 2.2.2, there are infrastructure microservices responsible for API Gateway,

Service Discovery, and Configuration Server. Solutions for problems encountered in SOA

applications may not apply in REST-based microservices. Therefore, instead of using an existing

ESB, those infrastructure microservices have been implemented in order to provide lightweight

and REST-based solutions that are designed for microservices. Table 2 aims to summarize the

comparison between SOA and MSA described in this section.

2.4 SERVICE COMPOSITION STRATEGIES

SOA and MSA represent two architectural styles for building service-based applica-

tions that are composed of multiples distributed services. Considering the principles presented

in both architectural styles, services must be well-defined, self-contained, and, specifically in

the terms of microservices, small. In this form, in order to perform complex business processes,

service collaboration is required. For instance, considering a service-based application (SOA or

MSA) for hospital management, which each service is responsible for a business capability, it is

necessary to perform service interactions to execute business processes such as patient transfer,

hospitalization, operation recovery, among others.

Service collaboration can be performed by a specific service known as composed
9 <https://www-01.ibm.com/software/br/info/middleware/applications/>
10 <http://www.oracle.com/technetwork/middleware/service-bus/overview/index.html>
11 <https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=16263>

https://www-01.ibm.com/software/br/info/middleware/applications/
http://www.oracle.com/technetwork/middleware/service-bus/overview/index.html
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=16263
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Table 2 – Comparing SOA and MSA

Concern SOA MSA

Architectural
component

Services as architectural components Services as architectural components

Component
sharing

Built on the idea of “share-as-much-as-
possible” architecture approach

Built on the idea of “share-as-little-as-
possible” architecture approach

Philosophy More importance on business functionality
reuse

More importance on the concept of bounded
context

Governance
model

Centralised data management and gover-
nance

Decentralised data management and gover-
nance

Communication
mechanisms

ESB for communication (too smart pipes) Less elaborate and simple messaging sys-
tems (dump pipes)

Supported pro-
tocols

Uses protocols such as WSDL, SOAP, and
UDDI

Uses lightweight protocols such as
HTTP/REST and AMQP

Source: Elaborated by the author.

service. As mentioned in Section 2.1, composed services are services that access and depended

on multiple services in order to provide business functionalities. Although the concept of

composed service can be applied in service-based applications, composed services infringe one

of the main principles proposed by the microservices architectural style: componentization via

services. In particular, componentization in MSA is implemented at the level of services that

must have only a single responsibility and be self-contained (LEWIS; FOWLER, 2014). For this

reason, in MSA-based applications, instead of using composed services, it is recommended to

utilize service composition strategies to execute business processes that require microservice

collaboration.

In order to address the problem of services collaboration, service composition is

adopted by many companies as a flexible solution for building service-based applications.

Service composition includes a sequence of tasks or activities and relationships between them to

execute a business process. In this context, service orchestration and choreography represent two

perspectives on how a service composition can be executed (PELTZ, 2003). The former refers to

a centralized business process that coordinates a series of service invocations, like the conductor

in an orchestra, while the latter represents decentralized and cooperative service coordination,

like dancers all finding their way and reacting to others around them in a ballet (NEWMAN,

2015).

Each service composition approach (orchestration or choreography) has advantages
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and disadvantages since they address different problems. For instance, according to Richards

(2015b), service orchestration is based on the mediator topology that is commonly used for

coordinating multiple steps through a central mediator. In addition, service orchestration is

recommended when it some level of management at a higher level to process complex data flows

is required. Service choreography, on the other hand, is based on the broker topology that is used

to chain events together without the use of a central mediator. It is recommended for a relatively

simple event processing flow.

2.4.1 Service orchestration

Service orchestration refers to a service composition strategy in which services are

controlled in a centralized manner (NANDA; CHANDRA; SARKAR, 2004). A centralized

entity, known as orchestrator or conductor, is responsible for managing and coordinating the

entire service orchestration. In order to specify service orchestration, domain-specific languages

for orchestration are used to describe service interactions by identifying messages, modeling

business logic, and invocation sequences (BARKER; WALTON; ROBERTSON, 2009). Those

languages are executed on an orchestration engine. In the SOA domain, Web Services Business

Process Execution Language (WS-BPEL) is a standard executable language for specifying

service orchestration within business processes. An orchestrated business process is also called

executable processes since they are intended to be executed by an orchestration engine (BARROS;

DUMAS; OAKS, 2005).

Figure 5 represents the topology found in service orchestration that is composed of a

set of services and a single centralized entity. The centralized entity represented in Figure 5 is

responsible for coordinating each service in a given order to perform a process flow. To this end,

the coordinator performs requests and receives responses for completing a business process.

2.4.2 Service choreography

Service choreography describes a collaboration among a collection of services to

achieve a common goal focusing on message exchange (BARROS; DUMAS; OAKS, 2005;

BARKER; WALTON; ROBERTSON, 2009). Service choreography may be expressed in lan-

guages such as Web Service Choreography Interface (WSCI)12, Web Services Choreography

Description Language (WS-CDL)13, and Business Process Model and Notation (BPMN) in
12 <https://www.w3.org/TR/2002/NOTE-wsci-20020808/>
13 <https://www.w3.org/TR/ws-cdl-10/>

https://www.w3.org/TR/2002/NOTE-wsci-20020808/
https://www.w3.org/TR/ws-cdl-10/
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Figure 5 – Service orchestration

Source: Elaborated by the author.

version 2.0 14. Different from service orchestration, in the choreography model there is no

central element responsible for coordinating services. In this model, each service is responsible

for listening, processing, and publishing events. Although there is no central element respon-

sible for coordinating services, a lightweight message broker (e.g., ActiveMQ, HornetQ, or

ZeroMQ) is required to distribute events that are triggered by the collection of services. This

event distribution activity is performed by a broker or event channel using the publish-subscribe

pattern (EUGSTER et al., 2003).

The choreography model is exhibited in Figure 6 and is composed of a set of services

and one message broker. The control in choreography is decentralized since each service involved

in this composition must know which events should be listened and processed and which events

should be created and published in the message broker.

2.5 DECLARATIVE BUSINESS PROCESS

A business process consists of a set of activities that are performed in coordination

to accomplish a business goal (AALST; ROSA; SANTORO, 2016). Each business activity may

require inputs to process its tasks and produce outputs after finishing its processing. In particular,

a business process can be represented as a model in order to provide an abstraction that acts as a

blueprint for a set of business process instances. For instance, a workflow can be defined as a

business process model that is represented graphically in order to facilitate the visualization of
14 <http://www.omg.org/spec/BPMN/2.0/>

http://www.omg.org/spec/BPMN/2.0/
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Figure 6 – Service choreography

Source: Elaborated by the author.

a specific business process. In addition, a workflow presents all the necessary information to

automate its execution (SILVA et al., 2013). In this context, there are two modeling paradigms

to specify business processes: declarative and imperative.

An imperative business process is a modeling approach that provides a precise defi-

nition of the control-flow in the business process (GOEDERTIER; VANTHIENEN; CARON,

2015). In this approach, all the execution alternative flows must be explicitly represented

in the process model. Well-designed imperative process models based on formal semantics

and precise specifications can be executed efficiently and effectively (GOEDERTIER; VAN-

THIENEN; CARON, 2015). A dynamic business process, however, may result in maintainability

issues (FAHLAND et al., 2009) because there may be new flows that were not mapped during

the modeling process. Therefore, the imperative approach is a viable option for cases in which

the business process is well known and stable.

In a different manner, a declarative business process, also known as dynamic business

process (GASEVIC; GROSSMANN; HALLE, 2009), is a modeling approach that focuses on

what should be done in order to achieve business goals, without specifying all possible alternative

flows and how to reach the final state in the process model (GOEDERTIER; VANTHIENEN;

CARON, 2015). That approach can be defined by Event-Condition-Action (ECA) rules. Accord-

ing to Alferes, Banti, and Brogi (2006), ECA rules are an intuitive and powerful paradigm for

programming reactive systems and its fundamental construct forms the following structure: on

Event if Condition do Action.
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In this context, a declarative business process specifies sets of event conditions,

constraints or business rules, and business activities. Event condition is a type of event that

should be listened. A constraint is a business rule that must be respected during the process

execution. A business activity is an action that manages a business resource. As a consequence of

the declarative approach, all alternative flows are implicitly specified and defined as the flow that

does not violate the business rules. In addition, declarative business processes can be combined

with formalisms such as Linear Temporal Logic (LTL) to ensure the correctness of the process

models (SILVA et al., 2013).

In order to illustrate declarative process modeling, a simplified credit approval

process is described by Goedertier, Vanthienen, and Caron (2015) . The declarative process

represents a set of business activities and a set of business rules. This process can be declaratively

specified:

• business activities: handleCreditApplication, applyForCredit, checkDebt, checkIncome,

reviewCredit, rejectCredit, makeProposal, rejectProposal, acceptProposal, reviewCollat-

eral, changeApllication, collectInformation, completeContract, and closeApplication.

• business rule 1: when the customer applies for credit the bank should either make a credit

proposal or reject the credit application within 10 days.

• business rule 2: a credit review and a collateral review are required before either a

proposal is made or the credit is rejected.

• business rule 3: income and debt information are a prerequisite to reviewing a credit.

• business rule 4: the worker who reviews the credit cannot be the applicant of the credit

application.

• business rule 5: when the bank makes a credit proposal, the bank is committed to complete

the contract when the customer accepts the proposal within 5 days.

• business rule 6: the activities check income and check debt may only be performed after

a customer has applied for credit.
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3 RELATED WORK

The proposal of this dissertation involves the challenge of performing microservices

orchestration using a DSL based on declarative business processes. There are research papers

that propose DSLs to specify web-services or microservices composition. Other papers present

proposals to perform web-services composition applying approaches inspired by chemical

reactions. Other studies address microservices composition using orchestration as main service

composition strategy. In this context, the related work presented in this chapter address at least

one of the mentioned dimensions, which may have different approaches or use other technologies.

3.1 COMPOSITION LANGUAGES

Jaradat, Dearle, and Barker (2013) have proposed a DSL for web services orches-

tration that provides abstractions for defining service identifiers, workflow interfaces, and

coordination elements. In order to address scalability challenges presented in centralized orches-

tration (e.g., the consumption of network bandwidth, degradation of performance, and single

points of failure), the proposed language is used to specify decentralized orchestration using

service-oriented workflows that can be partitioned into smaller fragments to be executed in

different distributed orchestration services. These orchestration services collaborate in order to

execute each part of the workflow specification until it has been completed.

The workflow specification is based on WSDL in order to identify and locate web

services. As result, the proposed DSL cannot be applied to orchestrate microservices that are

based on the RESTful architectural style. Finally, Jaradat, Dearle, and Barker (2013) have

conducted performance evaluations in order to verify the execution time between decentralised

and centralised orchestration using the proposed DSL.

Safina et al. (2016) have extended the Jolie programming language1 in order to sup-

port microservice orchestration using data-driven workflows. Formerly, Jolie is a programming

language proposed by Montesi, Guidi, and Zavattaro (2014) that can be used to orchestrate

web-services based on WSDL. Jolie is an imperative DSL that is used to define two types of

instructions: deployment and behavior. The former is composed of web service interfaces,

message types, and communication ports. The latter represents a sequence of instructions that

define imperatively the service orchestration.

In the extended version of Jolie, the authors have introduced new data types and
1 <http://www.jolie-lang.org/>

http://www.jolie-lang.org/
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operations in order to support regular expressions and data-driven operators. For evaluation, the

authors have presented two example applications that are used to illustrate how to apply service

orchestration using the original and the extended version of Jolie.

Despite proposing a solution for microservice orchestration, however, Safina et al.

(2016) have not adopted the principles of the microservice architecture style discussed in Section

2.2.1. In addition, instead of applying the microservice patterns and best practices discussed

in Section 2.2 to support microservice composition, the extended version of the Jolie language

inherits SOA standards, such as WSDL and ESB, to identify and orchestrate microservices.

However, such SOA standards, as discussed in Section 2.3, have not been applied in microservice-

based applications. Finally, the Jolie language uses an imperative approach to define data flows

in which each step must be specified such as microservices location, communication protocol,

inputs and outputs, and statements conditions (e.g., if and else statements).

3.2 WEB-SERVICES COMPOSITION

Wang and Pazat (2013) have proposed a chemistry-inspired middleware for web

service composition using orchestration or choreography by providing different sets of rules.

Depending on the rules, application engineers are able to specify their preferred execution

models to run service compositions, in either centralized or collaborative way. The middleware is

implemented as a distributed chemical system in which a collection of web services are modeled

as a series of chemical reactions. Furthermore, the middleware is implemented using Higher-

Order Chemical Language (HOCL) (BANâTRE; FRADET; RADENAC, 2006), a programming

language that implements the chemical programming model, and running over distributed

infrastructures (Grid’50002).

The chemical programming model describes computation in terms of a chemical

solution in which molecules (representing data) interact freely according to reaction rules

(BANâTRE; FRADET; RADENAC, ). In the proposed middleware, to perform the composition

of web services, each service must be modeled as a chemical web service and connected to an

existing web service. In this manner, the collaboration between chemical web services using

orchestration or choreography is propagated to the real-world web services. Lastly, the authors

have conducted a number of experiments in order to evaluate the efficiency and complexity of

different models using the chemical middleware.
2 <www.grid5000.fr>

www.grid5000.fr
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Another similar approach inspired by chemistry has been proposed by Fernández,

Tedeschi, and Priol (2016). The authors have proposed a chemistry-inspired middleware for

executing web service composition in a decentralized manner. In order to define service com-

position, the HOCL language is used to express workflow definition according to the chemical

paradigm. Consequently, it is required to establish a connection between the chemical abstraction

of a web service and an existing web service. Lastly, a proof of concept has been realized by the

authors, through the deployment of a software prototype, in order to demonstrate the viability of

the proposed solution for service composition.

Both aforementioned approaches, however, bring complexity and overhead during

the service composition since it is necessary to establish connections between the chemical

web service and exiting web services. In addition, the adoption of those approaches may face

difficulties and resistance in lightweight architecture such as microservices since it is required

a chemical middleware in order to execute service composition defined in HOCL. In addition,

solutions based on SOA cannot be applied for REST-based microservice composition because

those solutions require description languages (e.g., Business Process Execution Language (BPEL)

and WSDL) and a middleware (e.g., ESB) to composite web services.

3.3 MICROSERVICES COMPOSITION

Yahia et al. (2016) have proposed an event-driven lightweight platform for microser-

vice composition, named Medley, using orchestration as main composition strategy. In the

Medley platform, a particular DSL is used to describe microservice orchestration as composi-

tions. Before defining a composition in Medley DSL, it is required to register the information

(e.g., endpoints, operations, data types) about each microservice that will be used during the or-

chestration. The information about the registered microservice is stored in the platform’s process

repository for later use. For instance, after registering the information about microservices, a

user can use the registered microservices to define which operations will be performed during

the orchestration. In addition, Medley DSL follows an event-driven approach for expressing

microservice orchestration according to the events that may occur during the microservice

composition. Lastly, in order to validate the proposed platform, the authors have conducted a

performance evaluation to analyze platform scalability criteria.

Oberhauser (2016) has proposed a lightweight approach, named Microflows, for

microservices orchestration using a declarative approach with cognitive agents. In order to
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specify microservice orchestration using Microflows, it is required to perform three activities:

(i) describing information (e.g., endpoints, supported operations, inputs and outputs) about

a microservice using a JSON-based service description; (ii) specifying goals for a particular

microservice composition; (iii) defining constraints that must be obeyed during the microservice

composition. After defining the microservice orchestration, Microflows utilizes a graph-based

database in order to store each service description as a node and microservice dependencies and

constraints as edges. In this manner, based on the stored microservice orchestrations (service

descriptions, goals, and constraints), the Microflows approach uses Belief-Desire-Intention (BDI)

agents (RAO; GEORGEFF et al., 1995) to execute workflows. The author has conducted a

performance evaluation for validating the Microflows approach.

Although the aforementioned research papers propose approaches for composite

microservices, Medley and Microflows are similar to SOA-based approaches for describing

services in order to composite them. For instance, in order to orchestrate microservices using

Medley or Microflows, it is required to previously describe and register each microservice that

will be part of the orchestration. As consequence, new microservices that have not been described

and registered previously cannot be used during the microservice composition. Therefore, Medley

and Microflows have limitations in dealing with the microservices dynamic location. Moreover,

these solutions are not available for both industry and academic communities, difficulting

reusability, extensibility, and experimental reproducibility.

3.4 COMPARISON BETWEEN APPROACHES

Table 3 summarizes and highlights a comparison between each related work and

the Beethoven platform in terms of contribution type, composition strategy, architectural style,

open source, and evaluation type. The first column represents the study identifier that is cited in

the table notes. The second column exhibits the main contribution type that has been proposed

(e.g., DSL, middleware, or platform). The third column describes which composition strategy

has been addressed by the related work. The fourth column expresses which architectural style

is addressed during the service composition (e.g., orchestration or choreography). The sixth

column indicates if the proposed solution is open source or not. The last column depicts the

evaluation type that has been conducted to evaluate the proposed solution by the related work.
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Table 3 – Comparison between approaches in the related work

Ref. Contribution Composition strategy Architectural style Solution approach Open
source

Evaluation type

S11 DSL for web-service or-
chestration

Decentralized orchestration SOA Imperative approach No Performance evaluation

S22 DSL for microservice or-
chestration

Orchestration SOA and Microser-
vice

Imperative approach Yes Example application

S33 Middleware for web ser-
vice composition

Orchestration or choreography SOA Declarative approach No Experiment

S44 Middleware for web ser-
vice composition

Decentralized orchestration SOA Rule-based programming No Example application

S55 Platform for microservice
composition

Orchestration Microservice Event-driven approach No Performance evaluation

S66 Platform for microservice
composition

Orchestration Microservice Declarative approach with
BDI agents

No Performance evaluation

S77 DSL and platform for mi-
croservice orchestration

Orchestration Microservice Event-driven architecture
and declarative business
processes

Yes Example applications and
controlled experiment

1 Jaradat, Dearle, and Barker (2013)
2 Safina et al. (2016)
3 Wang and Pazat (2013)
4 Fernández, Tedeschi, and Priol (2016)
5 Yahia et al. (2016)
6 Oberhauser (2016)
6 The Beethoven platform

Source: Elaborated by the author.
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4 BEETHOVEN

This chapter presents an event-driven platform, named Beethoven, for microservices

orchestration that facilitates the creation of complex MSA-based applications using microservice

data flows. The Beethoven platform is composed of: (i) a reference architecture, described

systematically using a particular methodology in Section 4.1; and (ii) an orchestration DSL

based on declarative business processes, detailed in Section 4.2.

4.1 BEETHOVEN’S REFERENCE ARCHITECTURE

A software reference architecture is a special type of architecture that provides ab-

stractions and guidelines for the specification of concrete architectures in a certain domain (AN-

GELOV; GREFEN; GREEFHORST, ; ANGELOV; GREFEN; GREEFHORST, 2012). Accord-

ing to Martínez-Fernández et al. (2017), reference architectures provide the following benefits:

(i) standardization for concrete software architectures by using software reference architectures

as blueprints for designing applications fulfilling such a standardized design; (ii) facilitation of

the design of concrete software architectures by providing guidelines to application developers;

(iii) systematic reuse of common functionalities and configurations throughout the creation of ap-

plications; (iv) risk reduction by using architectural elements that have been validated previously

during the design of the software reference architecture. In order to specify systematically a ref-

erence architecture, guidelines, processes, and methodologies have been proposed (ANGELOV;

GREFEN; GREEFHORST, 2012; GALSTER; AVGERIOU, 2011; NAKAGAWA, 2006).

In order to establish Beethoven’s reference architecture, a process to specify software

reference architectures named Process based on Software Architecture - Reference Architecture

(ProSA-RA) (NAKAGAWA, 2006) is used. Figure 7 illustrates ProSA-RA which is composed

of the following steps: (Step S-1) domain investigation for identifying software requirements to

design a reference architecture; (Step S-2) architectural analysis for establishing a set of archi-

tectural requirements; (Step S-3) architectural design for representing a reference architecture

using different architectural models; (Step S-4) reference architecture evaluation for validating

the specification in reference architectures. Following, each step in presented in details.
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Figure 7 – Outline structure of ProSA-RA

Source: Adapted from Nakagawa (2006).

4.1.1 Step S-1: Domain investigation

Based on the ProSA-RA process, the domain investigation step has been performed

in order to investigate the declarative business process and service composition domains. The

purpose of the domain investigation is to identify and consolidate software requirements to

design the proposed reference architecture. In order to perform the domain investigation step,

the following steps have performed: (i) identification of domain sources; (ii) identification of

functionalities; (iii) identification of domain concepts.

In order to accomplish the aforementioned step, it is necessary to consider several

sources of information such as domain tools, domain reference architectures, and domain

processes. However, to the best of our knowledge, despite the importance of microservices

composition and declarative business processes, there are no tool, reference architecture, or

domain process that address both microservices composition and declarative business processes.

For this reason, sources of information that have been investigated are divided into three sets: (i)

performance characteristics of declarative business processes; (ii) requirements for modeling

and execution of declarative business processes; (iii) Service orchestration mechanisms. Next,

we describe each set used in the domain investigation.

Set 1 - Performance characteristics of declarative business processes. Goed-

ertier, Vanthienen, and Caron (2015) define a set of performance characteristics for declarative

business processes that are used by different process modeling approaches. This set is composed

of two performance criteria (effectiveness and efficiency) that can directly impact on the business

and financial results of an organization. Beyond the performance criteria, there are additional
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characteristics for ensuring compliance, flexibility, expressibility, and comprehensibility. Each

characteristic of declarative business processes is described as follow:

• Process flexibility refers to the organization’s ability to apply modifications to their

business processes during at both design and run-time. This feature is important since that

organizations can have flexibility and adapt to accommodate new market situations (FINK;

NEUMANN, 2009; AUSTIN; DEVIN, 2009);

• Process compliance refers to a process in which is in correspondence with business

rules and business regulation. In this context, business rules are all the internally defined

business constraints that are provided by the organization. In contrast, business regulation

are all the externally imposed business constraints that are imposed by external regulatory

entities;

• Process effectiveness refers to a measure of a business process in producing the desired

business goals that can be qualitatively evaluated;

• Process efficiency refers to a business process that is capable to mitigate utilised/wasted

business resources in order to achieve its business goals. Process efficiency may result in

cost-efficient, when there is no better manner to organize the work that results in a better

cost (e.g., in terms of the total cost of ownership), or time-efficient, when there is no better

manner to organize the work that results in a better timer (e.g., in terms of average or

variability in lead time);

• Process expressibility refers to the ability to express a business process with its specific

process elements such as control-flow, data, execution and temporal information (LU;

SADIQ, 2007);

• Process comprehensibility refers to the ability to express and represent business processes

that can be easily understandable among various stakeholders (e.g., application developers,

business analysts, and business owners) (FAHLAND et al., 2009).

Set 2 - Requirements for modeling and execution of declarative business pro-

cess. In the paper written by Vasilecas, Kalibatiene, and Lavbic (2016), the authors have

conducted an analysis of five process management systems (IBM Web- sphere (v.7.0 2014)1,

Simprocess (v 2015)2, Simul83, AccuProcess 4 and ARIS 9.7 55) that address declarative busi-

ness processes in order to identify research opportunities. As results, the authors have identified
1 <http://www-03.ibm.com/software/products/en/modeler-advanced>
2 <http://simprocess.com>
3 <http://www.simul8.com>
4 <http://bpmgeek.com/accuprocess-business-process-modeler>
5 <http://www.softwareag.com/corporate/products/new_releases/aris9/more_capabilities/default.asp>

http://www-03.ibm.com/software/products/en/modeler-advanced
http://simprocess.com
http://www.simul8.com
http://bpmgeek.com/accuprocess-business-process-modeler
http://www.softwareag.com/corporate/products/new_releases/aris9/more_capabilities/default.asp
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that the analyzed tools have no support for both the modeling and execution in declarative

business processes. In this manner, the authors have proposed a set of software requirements for

modeling and execution of declarative business processes that present a dynamic mechanism to

represent business rules and activities based on internal and external context. According to the

authors, an external context is a set of variables and context rules that define a particular state of

the environment. In contrast, an internal context is a current state of system resources. The set of

requirements that are proposed by the authors are presented as follows:

• REQ-1: A declarative business process should not have a predefined sequence of activities.

– REQ-1.1: Every subsequent activity should be selected according to predefined rules

and a context. Therefore, every subsequent declarative business process instance may

differ from the previous instance of the same declarative business process.

– REQ-1.2: If there is no activity for further execution at a declarative business process

runtime, it should be possible to do the following: (i) to terminate the execution of

a declarative business process instance; (ii) to define a new activity and concerning

rules for a declarative business process instance execution.

• REQ-2: Context-based dynamicity.

– REQ-2.1: It should be possible to define an external and internal context.

– REQ-2.2: A declarative business process should react to the change in a context.

• REQ-3: Rule-based dynamicity.

– REQ-3.1: It should be possible to define new business rules and to change or delete

existing business rules at runtime.

– REQ-3.2: A declarative business process should react to the changes in business

rules at process instance runtime.

– REQ-3.3: Every next activity in a declarative business process should be selected

according to the predefined business rules.

• REQ-4: Any role involved in declarative business process execution should support

declarative business process instance change, i.e. change of activities or their sequence,

according to the context and rules at runtime with possibly low latency.

• REQ-5: Before selecting the next activity, the historical data of instances execution of the

same declarative business process should be analysed and the selected next activity should

not cause execution of an unacceptable sequence of activities, regarding to early gained

experience.

– REQ-5.1: The historical data of each declarative business process instance execution
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should be stored in a log file.

– REQ-5.2: It should be possible to define executed instances of a declarative business

process as a "good practice” and a "bad practice".

– REQ-5.3: It should be possible to select a suitable instance, labelled as a "good

practice", from the historical data for repeated execution.

– REQ-5.4: Time, cost, etc. values should be calculated and stored for each executed

declarative business process instance.

– REQ-5.5: Instances named "bad instance” should not be executed.

• REQ-6: A declarative business process execution and selection of the next activity at

runtime should be based on goal-oriented approach.

Set 3 - Service orchestration mechanisms. Murguzur et al. (2014) have conducted

a systematic literature review and evaluated seventeen service orchestration approaches after

applying the inclusion and exclusion criteria. The systematic literature review objective was

to analyze service orchestration approaches from a service orchestration and process flexibility

perspectives. The service orchestration perspective is composed of the following properties:

language expressiveness, composition model, and execution environment. The process flexibility

perspective is formed by the following properties: variability, support for large collections

of process modifications, adaptation, need for changes during runtime, evolution, need for

structural changes during runtime, and looseness, need for loosely-specified models. Each

service orchestration property and process flexibility perspective is detailed as follows.

Service orchestration properties:

• Language expressiveness: languages that are used to describe services that enable ser-

vices to be described semantically and define tasks or goals to perform the service orches-

tration.

• Composition model: languages that are used to define service orchestration and support

non-functional requirements.

• Execution environment: communication protocol that is used (e.g., SOAP or REST) and

technologies that are used for service discovery (e.g., UDDI).

Process flexibility abilities:

• Variability: ability to execute a process depending on a particular context. Processes that

have the same structure can perform different activities according to contextual information.

Thus, the behavior of a process depends on which inputs are assigned to the activities

performed.
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• Adaptation: ability to adapt the behavior of the process and its structure through adap-

tations. There are two types of devices that can trigger an adaptation in the process:

exceptions and unexpected situations. In addition, adaptations may have the following

models: planned adaptation and unplanned adaptation.

• Evolution: ability of process instances to change as the corresponding process structure

evolves. Since processes may change over time, it is necessary to provide mechanisms to

support and apply evolutionary changes in new and running instances.

• Looseness: ability to specify only part of the process during design-time in order to deal

with unpredictability, non-repeatability and emergence. In other words, this capability

allows to specify fragments of a process that during its execution will be completed from

the execution of its activities.

In addition, Murguzur et al. (2014) have identified and characterized the following

service orchestration techniques: (i) workflow-based techniques that aim to create a workflow

for later execution; (ii) artificial intelligence planning techniques that aim to resolve service

composition by applying algorithms for solving a planning problem to determine which action

should be performed in order to achieve a final goal.

4.1.2 Step S-2: Architectural analysis

Based on information identified in the previous step, a set of architectural require-

ments for the Beethoven’s reference architecture has been established. The set of architecture

requirements is classified into two subsets: source and concept. The subset source refers to the

information used in the previous step (Set 1: performance characteristics of declarative business

processes; Set 2: requirements for modeling and execution of a declarative business process; and

Set 3: Service orchestration mechanisms). The subset concept refers to requirements that are

related to declarative business process (DBP), requirements related to event-driven architectures

(EDA), and requirements related to Quality of Service properties (QoS).

Table 4 illustrates the Beethoven reference architecture requirements. The columns

refer to, from left to right, the requirement identification, the requirement description, the source

of information related to requirements, and the concepts related to the requirements.
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Table 4 – Beethoven reference architecture requirements

ID Requirement Source Concept

REQ-1 The reference architecture must provide mechanisms to measure process
efficiency and effectiveness that can be qualitatively evaluated.

Set 1 QoS

REQ-2 The reference architecture must support metrics related to non-functional
requirements.

Set 3 QoS

REQ-3 The reference architecture must provide architectural elements to pro-
duce, detect, consume, and react to events that may occur during a
declarative business process execution.

Set 1, Set 2,
Set 3

EDA

REQ-4 The reference architecture must maintain data consistency across multi-
ple instances of declarative business processes without using distributed
transactions.

Set 1, Set 2,
Set 3

EDA

REQ-5 The reference architecture must guarantee process compliance during an
execution of business processes.

Set 1 DBP

REQ-6 The reference architecture must provide process flexibility in order to
apply modifications to an specification of declarative business process
during both at design-time and at run-time.

Set 1, Set 2 DBP

REQ-7 The reference architecture must have a contextual framework in order
provide context information for instance of declarative business pro-
cesses.

Set 2 DBP

REQ-8 The reference architecture must support communication protocols that
are commonly used in microservices-based application.

Set 3 EDA

Source: Elaborated by the author.

4.1.3 Step S-3: Architectural design

In order to design a reference architecture, different architectural models and repre-

sentation techniques should be used for representing different views of an architecture (NAK-

AGAWA, 2006). Based on the concepts proposed in the ProSA-RA process, the following

resources have been chosen to represent Beethoven’s reference architecture: (i) types of knowl-

edge/elements: lifecycle of a declarative business process and interaction between architectural

components; (ii) technique of representation: block diagram, layers diagrams, and UML dia-

grams. Figure 8 depicts the general representation of Beethoven’s reference architecture using a

block diagram (modules). This architecture is a 4-layer architecture composed by API, Service,

Database Abstraction, and Orchestration Engine layers, which are described as follows.
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Figure 8 – Beethoven’s reference architecture

Source: Elaborated by the author.

4.1.3.1 API Layer

This layer provides a uniform interface and endpoints to standardize the Beethoven’s

Service Layer access. Such interfaces and endpoints are specified following the RESTful

standards and conventions, granting a technology-agnostic access. In order to provide process

flexibility, applying modifications to a specification of a declarative business process during

both design-time and run-time, the API layer offers RESTful endpoints to maintain workflow

specifications. For instance, to add a new event handler to an existing workflow, an HTTP POST

request must be performed to the URL "api/workflows/workflowName/handlers" using as a

request body an event handler definition. In this example, the expression "{workflowName}"

represents a variable URL for the workflow name. The endpoints offered by the Layer API are

described in Appendix B, according to their respective HTTP methods, URLs, request parameters

and request body.
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4.1.3.2 Service Layer

This layer provides a controlled access to the other layers in the Beethoven’s refer-

ence architecture (i.e. Database Abstraction and Orchestration layers). This layer implements all

services that are consumed by the API layer (e.g., create a new event handler, delete a particular

task, and so on). In addition, the services offered by this layer can be used to build applications

for managing, monitoring, and visualizing the workflow execution.

The Service Layer provides a set of services to handle the execution of workflow

instances. For example, it is possible to start a workflow instance; later, pause the running

workflow instance; then, after a period of time, start the workflow instance from the state in

which it was paused. These commands affect the life cycle of a workflow instance. The workflow

instance is created after scheduling a workflow definition.

Figure 9 presents the states that compose the life cycle of a workflow instance. The

first state that a workflow instance can assume is scheduled. Once scheduled, the Beethoven

platform should start the execution of the workflow instance (the running state). During the

execution of the workflow instance, it is possible to pause (the paused state) and restart the

workflow instance. After performing all tasks successfully, the workflow instance is completed

(the completed state). If one task fails and this fault is not handled, then the execution of the

workflow instance will fail (the failure state). Another possibility to interrupt the execution of

the workflow instance is through the cancel command (the canceled state).

4.1.3.3 Database Abstraction Layer

This layer is used to store the workflow, task, and event handler definitions. All

information concerning the workflow must be stored in order to create workflow instances.

Runtime changes in the workflow definition will result in the creation of new workflow instances

that have the new version of the workflow definition. The Database Abstraction Layer is also

responsible for tracking and recording information about different workflows execution, such as

resource utilization, throughput, and execution time. Such information can be used in a further

analysis to identify, for instance, the existence of bottleneck or failures when performing certain

tasks.
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Figure 9 – Life cycle of a workflow instance

Source: Elaborated by the author.

4.1.3.4 Orchestration Engine Layer

This is the architecture core layer and follows the event-driven architectural style to

provide a workflow execution mechanism in a decoupled and scalable manner. It is composed

of three main architectural components: Event Channel, Event Processor (Decider, Report,

Workflow, and Task), and Instance Work (Task and Workflow). The Event Channel component

is used as an event bus to exchange messages between Event Processor components and can be

implemented as message queues, message topics, or a combination of both. The Event Processor

component is responsible for processing a specific type of event and notifying a successful

or failure execution by publishing another event in the Event Channel. An Event Processor

component can be bound to a set of Instance Work component instances. The Instance Work

component is responsible for performing a specific activity (e.g., decision, reporting, workflow,

or task) demanded by the Event Processor component to which it is bound.

The Orchestration Engine, as shown in Figure 8, is composed by an event channel,

used to exchange event messages between event processors, which can be of four types: Decider

Event Processor, Report Event Processor, Workflow Event Processor, and Task Event Processor.
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Specifically, in the event process context, there are two types of events: an event (occurrence of a

particular action) and a command (an action to be performed). In the Orchestration Engine, each

event processor can send or receive events and commands to or from another event processor

using the Event Channel. In Table 5 and 6, all events and commands are described by their

respective identifiers, sources, targets, and descriptions.

The Workflow Event Processor can send events during execution of workflow in-

stances, such as WorkflowScheduledEvent, WorkflowStartedEvent, and WorkflowCompletedEvent,

that represent events for scheduling, starting and completing a workflow, respectively. In addition,

it can also receive commands to control the execution of a workflow instance, such as StartWork-

flowCommand, StopWorkflowCommand, and CancelWorkflowCommand, for starting, stopping

and canceling a workflow, respectively. After receiving the command to start a workflow, the

Workflow Event Processor creates a workflow instance and a worker (Workflow Instance Worker),

which is responsible for handling all events and commands related to the workflow instance that

is created by the event processor. In this way, multiple workflow instances can be executed in

parallel isolatedly.

The Task Event Processor sends events during running tasks (TaskStartedEvent,

TaskCompletedEvent, TaskFailedEvent, and TaskTimeoutEvent) and receives commands to exe-

cute tasks (StartTaskCommand). In summary, the Workflow Event Processor and Task Event

Processor delegate the activity of managing the events and commands to their respective workers,

providing scalability to the proposed architecture.

The Decider Event Processor receives events generated by the Task Event Processor

and Workflow Event Processor (e.g., WorkflowCompletedEvent or TaskCompletedEvent) to

decide which action (command) should be performed. To this end, the Decider Event Processor

uses event handlers definitions in order to evaluate ECA rules. For instance, if a specific event

occurs during the execution of a workflow instance, and an evaluated condition is true, then a

particular command or a set of command must be performed.

The Report Event Processor receives all events that are generated by running work-

flow instances with their respective tasks to record metrics (e.g, execution time) on each instance.

Furthermore, additional information about failures or timeouts in the task execution are also

written from the events received by the processor. This way, information about the execution

time of each task or the entire workflow can be consulted later using the API and Service layers.

The sequence diagram, shown in Figure 10, illustrates the interaction between the

Orchestration Engine components in the sequential order that those interactions may occur. For
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the sake of simplicity, some events that are triggered during the workflow execution and do not

affect the understanding of the Orchestration Engine have been omitted.

Firstly, while there are workflows to be executed, the Workflow Event Processor will

receive a command to schedule a particular workflow. The scheduled workflow waits until the

Workflow Event Processor creates a workflow instance and starts running it, sending an event

about the started workflow to the Decider Event Processor and Report Event Processor. If there

is a task to be performed, the Decider Event Processor sends a command to start a particular

task to the Task Event Process. After that, the Task Event Processor delegates the responsibility

for executing the task to the Task Instance Worker, in which sends events about started tasks to

the Report Event Processor. When that task is completed, the Decider Event Processor receives

an event, evaluates its conditions, and if there are more tasks to be executed that satisfies the

specified conditions, it sends a command to start another task. During the execution of each

workflow, all events and commands exchanged by the event processors are forwarded to the

Report Event Processor.

Figure 10 – Interaction between the Orchestration Engine components

Source: Elaborated by the author.

4.1.4 Step S-4: Reference architecture evaluation

In contrast to reference architectures that are designed to facilitate system design

and development in multiple projects, concrete software architectures are designed in a spe-

cific context and reflect concrete business goals of the stakeholders (ANGELOV; GREFEN;
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Table 5 – List of events

Identifier Source Description

WorkflowScheduledEvent Workflow Event Processor The workflow instance execution was scheduled.
It takes the workflow name as input.

WorkflowCompletedEvent Workflow Event Processor The workflow instance execution was started. It
takes the workflow name and the instance name as
input.

WorkflowStartedEvent Workflow Event Processor The workflow instance execution was scheduled.
It takes the workflow name as input.

WorkflowFailedEvent Workflow Event Processor The workflow execution closed due to a failure.

WorkflowCanceledEvent Workflow Event Processor The workflow execution was successfully canceled
and closed.

TaskStartedEvent Task Event Processor The task was dispatched to a worker. It takes the
task name, task input, instance name, and workflow
name as input.

TaskCompletedEvent Task Event Processor The task was successfully completed. It takes the
task name, task output, instance name, and work-
flow name as input.

TaskTimeoutEvent Task Event Processor The task timed out. It takes the task name, instance
name, and workflow name as input.

TaskFailedEvent Task Event Processor The task failed. It takes the task name, task output,
instance name, and workflow name as input.

Source: Elaborated by the author.

Table 6 – List of commands

Identifier Target Description

ScheduleWorkflowCommand Workflow Event Processor Schedules a workflow in the queue. It takes the
workflow name as input.

StartWorkflowCommand Workflow Event Processor Starts a workflow that was stoped. It takes the
workflow instance name as input.

StopWorkflowCommand Workflow Event Processor Stops a running workflow. It takes the workflow
instance name as input.

CancelWorkflowCommand Workflow Event Processor Cancels a running workflow. t takes the workflow
instance name as input.

StartTaskCommand Task Event Processor Starts a task execution. It takes the task name, task
input, workflow name, and instance name as input.

Source: Elaborated by the author.

GREEFHORST, 2012). Thus, concrete software architectures can be used to validate the

specification in reference architectures. Aiming at observing the viability of the Beethoven’s



57

reference architecture, as well as its capability to execute declarative business processes, a

concrete architecture have been implemented and it presented in Chapter 5.

4.2 ORCHESTRATION DSL

This section introduces a textual DSL named Partitur for microservices orchestration

based on declarative business processes. The chapter focuses on the design and specification

of the Partitur language, presenting its characteristics and formal definition. By using Partitur,

it possible to specify declarative business processes that follow the structure of ECA rules. A

business process in Partitur is composed of three definitions: Workflow, Task, and Event Handler.

Each definition is described by using syntax diagrams and examples.

4.2.1 Partitur language design

Partitur is a textual DSL for creating declarative business processes in order to

compose a collection of microservices. Partitur is built using Xtext6, a tool based on Eclipse

Modeling Framework for the development of programming languages and domain-specific

languages. That covers many aspects of a programming language infrastructure including a

parser, linker, typechecker, compiler, and sophisticated Eclipse IDE integration. We have chosen

to use the Eclipse platform and Xtext for Partitur implementation because they are both open

source and mature technologies used extensively in both academia and industry. In the next

subsection, we present the main Partitur definitions: Workflow, Task, and Event Handler. The

completed grammar definition of Partitur is presented in Appendix A.

4.2.2 Partitur workflow definition

A workflow is an abstraction of a business process that is executed in a distributed

manner among different microservices. Different from some imperative approaches presented in

Chapter 3, a workflow defined in Partitur follows a declarative approach and is composed of a

set of activities that may eventually be executed and a set of constraints that must be obeyed. In

this way, the definition of a workflow is designed to ensure that all activities performed during a

business process are in accordance with the business constraints that have been specified.

Declarative business processes have a structure composed of two central elements:

business activities and business constraints. A constraint is a business rule that must be respected
6 <https://www.eclipse.org/Xtext/>

https://www.eclipse.org/Xtext/
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during the process execution. A business activity is an action that manages a business resource.

Since the Partitur language is based on declarative business processes, the Partitur workflow

definition provides declarative process elements such as a unique identifier (workflow name), a

set of tasks (business activities), and a set of event handlers (business constraints). Each Partitur

workflow element is defined as follows:

• A unique identifier that represents the workflow name;

• A set of tasks that contains the business tasks or activities that may be performed during

the execution of a business process;

• A set of event handlers that contains all the business constraints.

The Partitur workflow definition begins with the keyword workflow, followed by

a unique identifier, an optional set of task definitions, and an optional set of event handler

definitions. Figure 11 represents the syntax diagram of the Partitur workflow definition.

Figure 11 – Partitur workflow definition

Source: Elaborated by the author.

Code 1 provides an incomplete example of workflow definition in Partitur. The work-

flow is identified by workflowName and is composed of two tasks (taskName1 and taskName2)

and two event handlers (h1 and h2).

Code 1 – Sample of workflow� �
1 workflow workflowName {
2 task taskName1 {...}
3 task taskName2 {...}
4 handler h1 {...}
5 handler h2 {...}
6 }� �

4.2.3 Partitur task definition

In terms of declarative business processes, a business activity is an action that

manages a business resource. In Partitur, a task is an atomic and asynchronous operation

(business activity) responsible for performing an action that manages a microservice (business

resource). A Partitur task is composed of a unique identifier and an HTTP request. Each task
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element is described as following:

• A unique identifier that represents the task name;

• A HTTP request that represents one of the following HTTP methods: DELETE, GET,

POST, and PUT.

Figure 12 represents the syntax diagram of the Partitur task definition that begins

with the keyword task, followed by a unique identifier, and an HTTP request. Code 2 provides

an example of task definition. In this example, the task is identified by createNewBook and

is composed by one HTTP request that should be performed to a specific Uniform Resource

Identifier (URI) resource.

Figure 12 – Partitur task definition

Source: Elaborated by the author.

Code 2 – Sample of task� �
1 task createNewBook {
2 post("http://book-service/books")
3 }� �

4.2.3.1 Contextual input and HTTP utility methods

Partitur provides higher level utility methods that are built in the DSL in order to

perform HTTP requests during task executions. The HTTP methods supported by Partitur are:

DELETE, GET, POST, and PUT. The Partitur HTTP methods follow a code style convention

named FluentInterface (FOWLER, 2005). Furthermore, these methods facilitate the invocation

of RESTful-based microservices and enforce REST principles (Resources, Representations,

Messages, and Stateless) (FIELDING; TAYLOR, 2002).

In addition to DSL methods for invoking HTTP requests, the Partitur language

provides a data-driven approach for executing tasks. This approach is model of execution

based on the concept of Data-Driven Multithreading (DDM) (KYRIACOU; EVRIPIDOU;

TRANCOSO, 2006) and provides a scheduler that executes a task after all of its required data
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have been produced. As a result, no synchronization or communication latencies are experienced

after a task begins its execution. In order to implement the concept of DDM, the concept of

contextual inputs is introduced.

A contextual input is a data-driven mechanism for specifying the input of data to a

specific task from the result obtained after performing another task. For example, in order to

execute a task for the creation of purchase order, a task must receive the result from another task

responsible for calculating the shipping value. As a result, contextual inputs can be a powerful

mechanism that enables flexibility and non-blocking execution in the definition of data-driven

tasks.

Contextual inputs can be used as request body, query params, URI variables, and

HTTP headers. In order to use contextual inputs, a user must apply the following command:

"${contextualInputIdentifier}". The contextual input command is composed of an expression

(${...}), which involves a contextual input identifier. Furthermore, a contextual input is identified

dynamically by the Beethoven platform that will provide dynamic access to data from a particular

contextual input identifier. Code 3 illustrates samples of contextual inputs.

Code 3 – Sample of contextual inputs� �
1 body("${calculateShippingFee.response}")
2 queryParam("fee", "${calculateShippingFee.response}")
3 uriVariables("${calculateShippingFee.response}")
4 header("fee", "${calculateShippingFee.response}")� �

As follows, it is described how to specify each Partitur utility method to perform

HTTP requests:

Partitur HTTP delete - The Partitur delete method represents an HTTP DELETE

request and should be used to delete the specified resource. The delete method definition begins

the with the term delete, follow by the resource URI, an optional set of URI variables, and an

optional set of HTTP headers. Figure 13 represents the syntax diagram of the Partitur delete

definition. Code 4 represents two manners to express the Partitur delete method for removing

a consumer (resource) with an ID of 6732. In the first definition (Lines 1-2), the resource ID

is specified through the URI. In the second definition (Lines 4-6), the resource ID is specified

using URI variables. In addition, in both examples, the delete method utilizes an HTTP header

for authorization bearer access token that is part of OAuth 2.0 protocol7.
7 <https://oauth.net/2/>

https://oauth.net/2/
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Figure 13 – Partitur delete method definition

Source: Elaborated by the author.

Code 4 – Example of the Partitur delete method� �
1 delete("http://consumer-service/consumers/6732")
2 .header("Authorization", "Bearer token")
3

4 delete("http://consumer-service/consumers/")
5 .uriVariables("6732")
6 .header("Authorization", "Bearer token")� �

Partitur HTTP get - The Partitur get method is an abstraction of an HTTP GET

request that is responsible for retrieving information from a resource URI. It is possible to use

URI variables. In addition, it is possible to send query strings using the method queryParams

that receives two arguments: the name of the query param and the value of the query param. The

Partitur get method also supports HTTP headers. The Partitur get definition is composed of the

term get, followed by the resource URI, an optional set of URI variables, an option set of HTTP

headers, and an optional set of query params. Figure 14 represents the syntax diagram of the

Partitur get definition.

Code 5 represents an instance of the get method that is used to retrieve a consumer

by sending the following URL parameters: the parameter name with "George" as value; the

parameter birthday with “04-28-1988" as value; the parameter status, which is a contextual input,

with "${checkStatus.response}" as value. In addition, the header for authorization bearer access

token is used in the example.

Figure 14 – Partitur get method definition

Source: Elaborated by the author.
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Code 5 – Example of the Partitur get method� �
1 get("http://consumer-service/consumers")
2 .header("Authorization", "Bearer token")
3 .queryParams("title", "George")
4 .queryParams("birthday", "04-28-1988")
5 .queryParams("status", "${checkStatus.response}")� �

Partitur HTTP post - The Partitur post method creates a new resource by submitting

a given entity to a resource URI. It represents an HTTP POST method that supports URI variables,

HTTP headers, and a request message body. In Partitur post method, it is possible to send a

resource by using the body method. The definition of the post method is specified by the term

post, followed by the resource URI, an optional set of URI variables, and an optional body.

Figure 15 represents the syntax diagram of the Partitur post definition.

Code 6 is an example of Partitur post method in which a JSON file is sent to the

consumer resource in order to create a new consumer. In addition, it uses HTTP headers for

content type and authorization token.

Figure 15 – Partitur post method definition

Source: Elaborated by the author.

Code 6 – Example of Partitur post method� �
1 post("http://consumer-service/consumers/")
2 .header("Authorization", "Bearer token")
3 .header("Content-Type", "application/json")
4 .body(json)� �

Partitur HTTP put - The Partitur put method should be used to update a resource

from a given URI. It represents the HTTP PUT method. In the same way, as in the post method,

it supports URI variables, HTTP headers, and a request message body. The definition of put

method is specified by the term put, followed by the resource URI, an optional set of URI

variable, and an optional body. Figure 16 represents the syntax diagram of the Partitur put

definition. Code 7 is an example of Partitur put method in which a contextual input is used to

update an existing consumer. In addition, it uses an HTTP headers for the content type and

authorization token.
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Figure 16 – HTTP PUT definition

Source: Elaborated by the author.

Code 7 – Sample of HTTP PUT� �
1 put("http://consumer-service/consumers/")
2 .header("Authorization", "Bearer token")
3 .header("Content-Type", "application/json")
4 .body("${createNewConsumer.response}")� �

4.2.4 Partitur event handler definition

Partitur event handlers are based on ECA rules for programming business constraints

in declarative business processes. As mentioned before in Section 2.5, ECA rules provide an

intuitive and powerful paradigm for programming reactive systems and its fundamental construct

forms the following structure: on Event if Condition do Action. In other words, ECA rules are

composed of the following structure: when Event occurs, if Condition is verified, then execute

Action. In order to define a Partitur event handler, the following structure is used: an event

handler name, an event listener (Event), a set of conditions (Condition), and a set of commands

(Action). Each part of the event handler definition is explained below:

• A unique identifier that represents the event handler name;

• Event listeners are used to define which events must be listened and captured during the

workflow execution;

• Conditions define which parameters must be true in order to process an event. Otherwise,

events will not be processed. There are the following conditions that may be used:

workflowNameEqualsTo, taskNameEqualsTo, and taskResponseEqualsTo;

• Commands define which action should be performed on the occurrence of an event that

satisfies the specified conditions. For example, the startTask command is used to execute a

task by its name and an optional input value. There are the following available commands:

startTask, scheduleWorkflow, startWorkflow, stopWorkflow, and cancelWorkflow.

The Partitur event handler definition is specified by the keyword handler, followed

by a unique identifier, the event listener definition, a set of condition definitions, and a set of

command definitions. The definition of event listeners, conditions, and commands in Partitur are
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described in the following subsections. Figure 17 represents the syntax diagram of the Partitur

event handler definition.

Figure 17 – Partitur event handler definition

Source: Elaborated by the author.

In Code 8, it is illustrated how to declare an event handler in Partitur. In this

example, an event handler is declared to listen for the WORKFLOW_SCHEDULED event. If this event

is caught, the workflowNameEqualsTo("newConsumerProcess") condition will be evaluated.

If the evaluated condition is true, the startTask("createNewConsumer") command will be

executed.

Code 8 – Example of event handler� �
1 handler h1 {
2 on WORKFLOW_SCHEDULED
3 when workflowNameEqualsTo("newConsumerProcess")
4 then startTask("createNewConsumer")
5 }� �

4.2.4.1 Event listener definition

The definition of an event listener is composed by the keyword on and an event iden-

tifier. Event identifiers are constants that represent all possible events that can be triggered during

the execution of a workflow. For instance, after a workflow has started, an event represented by

WORKFLOW_STARTED is triggered. In addition, event identifiers are divided into two cate-

gories: task events and workflow events. The former represents the events related to executions

of tasks, while the latter designates the events associated with executions of workflows. Table 7

describes all the event identifiers.

4.2.4.2 Condition definition

The definition of a condition is composed of the keyword when and a set of Par-

titur conditions. In particular, a Partitur condition is a utility method built in the proposed

DSL in order to evaluate boolean expressions. The available condition are taskNameEqualsTo,

taskResponseEqualsTo, and workflowNameEqualsTo. The description for each Partitur condi-

tion is presented in Table 8.
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Table 7 – List of Partitur event identifiers

Event identifier Category Description

TASK_STARTED Task Event It indicates that a task has started.

TASK_COMPLETED Task Event It indicates that a task has completed.

TASK_TIMEDOUT Task Event It indicates that a task has timed out.

TASK_FAILED Task Event It indicates that a task has failed.

WORKFLOW_SCHEDULED Workflow Event It indicates that a workflow has been scheduled.

WORKFLOW_STARTED Workflow Event It indicates that a workflow has started.

WORKFLOW_COMPLETED Workflow Event It indicates that a workflow has completed.

Source: Elaborated by the author.

Table 8 – List of Partitur conditions

Condition Description Parameters

taskNameEqualsTo Condition responsible for evaluating
whether the captured event was triggered
by the specified task.

taskName - Unique identifier repre-
senting the task name that must be
verified.

taskResponseEqualsTo Condition responsible for evaluating
whether the response of a particular task
satisfies a JSONPath expressions.

jsonPath - A JSONPath expression.
matcher - A function to check for
conditions.

workflowNameEqualsTo Condition responsible for evaluating
whether the captured event was triggered
by the specified workflow.

workflowName - Unique identifier
representing the workflow name that
must be verified.

Source: Elaborated by the author.

Code 9 illustrates examples of conditions in Patitur. The first condition verifies if

the task name is equal to the string "taskName". The second condition verifies if the member of

JSON object that is referred by the JsonPath expression "$.consumers" has the size is equal to

100. The third condition verifies if the workflow name is equal to the string "workflowName".

Code 9 – Example of conditions� �
1 when taskNameEqualsTo("taskName")
2 when taskResponseEqualsTo("$.consumers", hasSize(100))
3 when workflowNameEqualsTo("workflowName")� �

In order to understand the taskResponseEqualsTo condition, two concept must be

introduced: JsonPath expressions and a Partitur matchers. First, JsonPath8 is a language used to

read, query, and manipulate JSON objects using JSON-based expressions. By using JsonPath
8 <https://github.com/json-path/JsonPath>

https://github.com/json-path/JsonPath
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expressions, it is possible, for example, to query and select a specific property of a JSON object

in order to perform boolean expressions. Second, A Partitur matcher is also an internal method

built in the proposed DSL for evaluating boolean expressions. Partitur matchers perform boolean

verifications in a JSON object that is queried by JsonPath expressions. For instance, in order

to implement a business constraint that needs to check if a smartphone price is less than 500

dollars, the following condition should be specified:

Code 10 – Example of Partitur matcher� �
1 taskResponseEqualsTo("$.smartphone.price", lessThan(500))� �

In addition, Code 10 illustrates how to use the condition taskResponseEqualsTo.

This condition is composed of two parameters. The first one refers to a JsonPath expression that

selects the property price from a JSON object representing a smartphone, while the second one

represents a parameter matcher that is used to verify whether the selected value of a JSON object

is less than 500. The available Partitur matchers are described in Table 9.

Table 9 – List of Partitur matchers

Matcher Description Parameters

not It is a unary operation that inverts the logic
by negation.

matcher - the Partitur matcher that
should be inverted.

lessThan It verifies if a examined value is less than
the specified value.

value - the value that should be com-
pared.

equalTo It verifies if a examined value is equal to
the specified value.

value - value - the value that should
be compared.

greaterThan It verifies if a examined value is greater than
the specified value.

value - value - the value that should
be compared.

nullValue It verifies if the examined object is null. There is no parameters.

empty It verifies if a collection is empty. There is no parameters.

hasItem It verifies if the item is contained in a exam-
ined collection.

item - the item to compare against the
items of an examined collection.

hasSize It verifies if the size of a collection has the
specified size.

size - the expected size of an exam-
ined collection.

Source: Elaborated by the author.

Partitur conditions, JsonPath expressions, and Partitur matchers provide an effec-

tive mechanism to specify business constraints that must restrict the execution of tasks in a
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declarative business process. Therefore, business constraints can be described at different levels

of complexity. For instance, it is possible to define a business process that is constituted of a

simple sequence of task invocation by using only the taskNameEqualsTo condition. In contrast,

it possible to define a business process that is composed of complex business rules using the

condition taskResponseEqualsTo.

4.2.4.3 Partitur command definition

Partitur commands are the last part of a declarative business process that follows the

ECA structure. A Partitur command definition is determined by the keyword then followed by a

set of Partitur commands. Partitur commands are methods build into the language in order to

perform actions that must be taken on tasks or workflows. For example, the command startTask

receives as a parameter the name of the task to be executed. Commands are indivisible operations

that can be executed successfully or not. The list of Partitur commands are composed of

startTask, startWorkflow, stopWorkflow, cancelWorkflow, finishWorkflow. Each Partitur

command and its parameters are described in Table 10.

Table 10 – List of Partitur commands

Command Description Parameters

startTask Command responsible for starting a
task.

taskName - Unique identifier representing the task
name that must be started.

startWorkflow Command responsible for starting a
workflow

workflowName - Unique identifier representing
the workflow name that must be started.

stopWorkflow Command responsible for stopping a
workflow.

workflowName - Unique identifier representing
the workflow name that must be stopped.

cancelWorkflow Command responsible for canceling
a workflow.

workflowName - Unique identifier representing
the workflow name that must be calceled.

finishWorkflow Condition responsible for finishing a
workflow.

workflowName - Unique identifier representing
the workflow name that must be finished.

Source: Elaborated by the author.

Code 11 presents the definition of five commands. The first command represents an

action to start the task named "taskName". The second command defines an action to start a

workflow named "workflowName". The third command specifies an action to stop the execution

of the workflow named "workflowName". The fourth command represents a command to cancel

the execution of the workflow named "workflowName". Finally, the fifth command represents
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an action to terminate the execution of a workflow.

Code 11 – Example of commands� �
1 then startTask("taskName")
2 then startWorkflow("workflowName")
3 then stopWorkflow("workflowName")
4 then cancelWorkflow("workflowName")
5 then finishWorkflow("workflowName")� �
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5 SPRING CLOUD BEETHOVEN

This chapter presents the concrete architecture, named Spring Cloud Beethoven, that

has been implemented based on the specification of the Beethoven’s reference architecture. The

remainder of this chapter presents the Spring Cloud ecosystem, details about the concrete archi-

tecture implementation, the basic concepts and common terminology related to the actor model,

a formal description of each actor that composed the concrete architecture, and a methodology

that describes how to use Spring Cloud Beethoven in MSA-based applications.

5.1 SPRING CLOUD ECOSYSTEM

Spring Cloud1 is an umbrella project that provides a set of components for software

engineers to develop cloud-native applications based on common patterns in distributed systems

(e.g., distributed configuration management, service registration and discovery, circuit breakers,

intelligent routing, a control bus, leadership election, distributed sessions, cluster state, and

so on). Spring Cloud solutions provide integrations for Spring Boot applications by applying

autoconfiguration and binding to the Spring Environment and other Spring programming model

idioms. As follows, a subset of the main Spring Cloud solutions is described.

• Spring Cloud Bus2 provides a lightweight message broker for connecting nodes of a

distributed system. The message broker is implemented using an AMQP broker as the

transport mechanism;

• Spring Cloud Netflix3 provides Netflix OSS integrations for MSA-based applications

using the best practices and patterns presented in Section 2.2.2;

• Spring Cloud for Amazon Web Services4 provides a module set to consume AWS

services and reduce the infrastructure related code in Spring-based applications;

• Spring Cloud Config5 provides server and client-side support for externalized configu-

ration in a distributed system. To this end, it provides a central microservice to manage

external configuration properties for applications across all environments (e.g., debug,

testing, and production);

• Spring Cloud Sleuth6 provides a distributed tracing solution for distributed applications
1 <http://projects.spring.io/spring-cloud/>
2 <https://cloud.spring.io/spring-cloud-bus/>
3 <https://cloud.spring.io/spring-cloud-netflix/>
4 <https://cloud.spring.io/spring-cloud-aws/>
5 <https://cloud.spring.io/spring-cloud-config/>
6 <https://cloud.spring.io/spring-cloud-sleuth/>

http://projects.spring.io/spring-cloud/
https://cloud.spring.io/spring-cloud-bus/
https://cloud.spring.io/spring-cloud-netflix/
https://cloud.spring.io/spring-cloud-aws/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-sleuth/
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by instrumenting external systems automatically and capturing data in logs or a remote

collector service.

Netflix, a pioneer in the microservices domain, has built many tools that are available

as open-source software under the Netflix OSS platform. In particular, Spring Cloud solutions

have been initially based on the technology stack provided by Netflix OSS in order to provide

integration with Spring Boot applications. The Netflix OSS platform is composed of a set of

microservices patterns such as a service discovery through Eureka, distributed configuration

through Archaius, resilient and intelligent inter-process and client side load balancer through

Ribbon, and isolate latency and fault tolerance at runtime through Hystrix. Each Netflix OSS

solution addresses a specific problem that MSA-based applications may face.

Although there are solutions for different common problems presented in MSA-

based applications, there is no solution to address microservice composition problems. Since

the concrete architecture is based on the Spring Cloud Netflix ecosystem, it provides integration

for Spring Boot applications using auto-configuration and binding to Spring Cloud Netflix

components, such as Spring Cloud Eureka (service discovery), Spring Cloud Ribbon (client-

side load balancer), and Spring Cloud Hystrix (circuit breaker). Therefore, in order to address

dynamic microservices location, Spring Cloud Beethoven relies on Spring Cloud Eureka for

service discovery and Spring Cloud Ribbon for client-side load balancer. As consequence,

there is no need to describe previously and register each microservice that will be part of the

orchestration. Thus, new microservices that are added to a microservices-based application can

be used during the microservice composition.

5.2 CONCRETE ARCHITECTURE

In contrast to reference architectures that are designed to facilitate system design

and development in multiple projects, concrete software architectures are designed in a spe-

cific context and reflect concrete business goals of the stakeholders (ANGELOV; GREFEN;

GREEFHORST, 2012). Thus, concrete software architectures can be used to validate the specifi-

cation in reference architectures. Aiming at observing the viability of the Beethoven’s reference

architecture, the concrete architecture, named Spring Cloud Beethoven, has been implemented

based on the specification of the Beethoven’s reference architecture and the Spring Cloud Net-

flix ecosystem. Specifically, in order to implement Spring Cloud Beethoven, the following
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technologies have been used: Java programming language7, Spring Cloud Netflix8, and Akka

toolkit9.

The concrete architecture has been implemented to run as an infrastructure mi-

croservice using a minimal setup in order to facilitate its integration with microservices-based

applications. For instance, in order to initialize Spring Cloud Beethoven, there is a set of Java

annotations that must be used in a Spring Boot application for configuring the concrete archi-

tecture automatically. A complete step by step guide for use of the concrete architecture is

presented in Section 5.5. Since Spring Cloud Beethoven is an infrastructure microservice, it can

be accessed directly through its RESTful API. Therefore, in a microservices-based application,

any microservice can manage workflows (create, delete, start, pause, cancel) using the Beethoven

API.

Figure 18 illustrates the Beethoven concrete architecture, which is decomposed into

four layers. The top layer contains the software components responsible for providing RESTful

APIs. The service layer contains the software components responsible for offering the services

to the components in the upper layer. The engine layer comprises the actors responsible for

executing microservice orchestrations that are defined in Partitur. Finally, the storage layer

comprises the software components responsible for storing the specifications of the orchestration

DSL.

The architectural requirements and the reference architecture represent a set of speci-

fications for building applications based on an event-driven architecture to execute declarative

business processes in parallel using non-blocking operations. Among these specifications, the

following can be highlighted: (i) elements to produce, detect, consume, and react to events that

may occur during a declarative business process execution; (ii) data consistency across multiple

instances of declarative business processes without using distributed transactions; (iii) guarantee

process compliance during an execution of business processes.

Based on the specifications of the reference architecture, it was decided to implement

the engine layer of the concrete architecture using the actor model since this model satisfies the

requirements through properties such as scalability, thread safety, encapsulation, fair scheduling,

location transparency, and mobility (see Section 5.3 for more details). In addition, the actor

model has a dynamic nature that allows the creation of new actors, modification of actor behavior

at runtime and communication between actors through message exchanges. The following
7 <http://www.oracle.com/technetwork/java/>
8 <https://cloud.spring.io/spring-cloud-netflix/>
9 <https://akka.io/>

http://www.oracle.com/technetwork/java/
https://cloud.spring.io/spring-cloud-netflix/
https://akka.io/
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Figure 18 – Concrete architecture

Source: Elaborated by the author.

Section describes each actor presented in the engine layer (e.g., WorkflowActor, TaskActor,

DeciderActor, and ReportActor).

5.3 ACTOR MODEL

The actor model is a mathematical theory that treats the concept of actors as the

universal primitives of digital computation (HEWITT; BISHOP; STEIGER, 1973). The model

was originally proposed by Carl Hewitt in the 1970s as an object-oriented model to be used in the

Artificial Intelligence area for safely exploiting concurrency in distributed systems (KOSTER;

CUTSEM; MEUTER, 2016). In the actor model, applications are composed of autonomous

entities denominated actors that communicate exclusively through asynchronous message passing.

In addition, an actor has its own behavior and mutable internal state that cannot be shared directly

with other actors.

An example of an actor system is represented by Figure 19. As displayed in the

figure, actors are essentially independent concurrent processes that encapsulate their internal

state and behavior, communicating exclusively by exchanging messages (KŘIKAVA; COLLET;
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FRANCE, 2012). Messages are sent asynchronously and each actor maintains a mailbox (queue

of received messages). Based on its designated behavior, each actor has the ability to respond to

incoming messages by sending new messages, creating new actors, or defining a new behavior,

which specifies how the message will process the next message. In other words, actors can be

understood as reactive, dynamic, scalable, and distributed entities.

Figure 19 – Network of several actors

Source: Elaborated by the author.

Two important properties of the actor model are thread safety and scalability. Thread

safety in actor model is provided by guaranteeing that message processing is executed by one

thread at a time. In addition, access to an actor’s mailbox is race conditions free. Therefore,

unlike shared memory concurrency models, the actor model provides a thread safety framework

for implementing concurrent-based applications. Scalability is accomplished by the ability to

create new actors to perform specific tasks. This property allows applications based on this model

to scale their logical processing units (actors) to satisfy higher demand. In addition, the actor

model has a lower context-switching overhead over the standard shared-memory threads with

locks (HALLER; ODERSKY, 2009). Furthermore, there are four important semantic properties

of actor systems: encapsulation, fairness, location transparency and mobility (KARMANI;

SHALI; AGHA, 2009). Each property is described below:

Encapsulation: The purpose of encapsulation is to provide a manner to organize programs

into logical units for logically related software resources (SEBESTA, 2012). In the

context of the actor model, there are two important requirements for encapsulation: state
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encapsulation and safe messaging.

Fair Scheduling: The notion of fairness in the actor model is based on a guarantee that a

message is eventually delivered to its destination actor unless the destination actor is

permanently unavailable.

Location Transparency: In the actor model, the actor name is agnostic about the actual location

of an actor. In other words, although an actor system can be run on the same CPU or

distributed on a network, the actor names must be unique in the context of their actor

system. Therefore, location transparency provides an infrastructure for a software engineer

to build actor-based applications without worrying about the actual physical actor locations.

Mobility: Mobility is defined as the ability of a computation to move across different computa-

tional resources. Mobility can be classified as either strong or weak (FUGGETTA; PICCO;

VIGNA, 1998). Strong mobility is defined as the ability of a system to support migration

of both code and execution state. Weak mobility, on the other hand, only allows migration

of code across different computational resources.

Those aforementioned properties enable compositional design and simplify reason-

ing (AGHA et al., 1997) and improve performance as applications and architectures scale (KIM;

AGHA, 1995). Since actors do not use shared memory or any shared system resources to

communicate and interact exclusively using asynchronous messages, the actor model prevents

common concurrency issues such as low-level data races and deadlocks by design (KOSTER;

CUTSEM; MEUTER, 2016).

5.4 ACTORS DESCRIPTIONS

In the actor model, actors are essentially independent of concurrent processes that

encapsulate their state and behavior and communicate exclusively by exchanging messages. To

implement the orchestration engine of the reference architecture presented in Section 4.1.3.4,

each event processor has been instantiated in the concrete architecture as an actor. Next, each

actor implemented in the concrete architecture is detailed in terms of internal state, sent or

received messages, behavior, and UML class diagram.

5.4.1 WorkflowActor

The WorkflowActor has been implemented following the Workflow Event Processor

specification. For this reason, it is able to receive and process commands to manage workflow
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instances. In practice, the WorkflowActor receives commands and creates child actors to manage

workflow instances. Specifically, the WorkflowActor works as a supervisory actor who receives

commands to manage a workflow instance and delegates that responsibility to a WorkflowIn-

stanceActor (WorkflowActor’s child). Each WorkflowInstanceActor receives commands from

the WorkflowActor and updates the state of the workflow instance. As a result, all work that

the WorkflowActor receives is delegated to a WorkflowInstanceActor. This approach provides a

mechanism to isolate a workflow execution with no shared data among the concurrent actors.

The UML class diagram, illustrated in Figure 20, represents the WorkflowActor class

and the commands to manage workflows. The WorkflowActor class is composed of methods that

are responsible for processing the following command: ScheduleWorkflowCommand, StartWork-

flowCommand, StopWorkflowCommand, and CancelWorkflowCommand. In order to send these

commands to the WorkflowActor, it is required to specify their appropriate input. For instance, to

schedule the execution of a specific workflow, the ScheduleWorkflowCommand should be used

as command and a workflow name should be used as command input. The other commands

required two inputs: a workflow name and a workflow instance name.

Figure 20 – UML class diagram of WorkflowActor

Source: Elaborated by the author.

5.4.2 TaskActor

The TaskActor receives a command to start tasks and sends success or failure events

during the task execution. To execute a task, TaskActor uses the services provided by the

TaskService to perform HTTP requests asynchronously. After receiving a command to start a

task, the TaskActor performs an HTTP request and registers the request callbacks. For example,
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when executing an HTTP request, one callback is recorded for a successful response and

another callback is recorded for failure response. Each callback triggers an event that is sent

to other actors (DeciderActor and ReportActor). In this way, different tasks can be performed

asynchronously in parallel with no external interference.

The UML class diagram, illustrated in Figure 21, represents the TaskActor class and

the command to start tasks. Since a task is an atomic operation, there is no command to interrupt

the task execution. In other words, after a task is started, it cannot be paused or canceled. In

order to execute a task, the StartTaskCommand should be used with the following command

inputs: task name, workflow name, and workflow instance name.

Figure 21 – UML class diagram of TaskActor

Source: Elaborated by the author.

5.4.3 ReportActor

The ReportActor is responsible for listening to all events triggered by other actors

(WorkflowInstanceActor and TaskActor) during the execution of workflow instances. These

events are used to record information about the execution of each task in a workflow. As an

internal state, the ReportActor stores and maintains information about all workflow instances

for further analysis of the application engineers. In addition, the information stored by the

ReportActor can be consumed through the Spring Cloud Beethoven’s API. For instance, it is

possible to retrieve the elapsed time for a specific task or calculate the execution time of a

workflow instance. It is also possible to retrieve all tasks that have failed in order to investigate

the possible causes. Therefore, the ReportActor provides metrics and tracking mechanisms for

software engineers in order to understand how distributed business processes are running in a

microservices-based application.

The UML class diagram, illustrated in Figure 22, represents the ReportActor class

and event that are captured during the execution of workflows and tasks. Since the ReportActor
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listeners to events that are triggered WorkflowInstanceActor and TaskActor, there are two event

categories that may be processed: workflow and task. The workflow events are ReportWork-

flowScheduledEvent, ReportWorkflowStartedEvent, ReportWorkflowStoppedEvent, ReportWork-

flowCompletedEvent, ReportWorkflowCanceledEvent, and ReportWorkflowFailedEvent. The

task events are ReportTaskStartedEvent, ReportTaskTimeoutEvent, ReportTaskFailedEvent, and

ReportTaskCompletedEvent.

Figure 22 – UML class diagram of ReportActor

Source: Elaborated by the author.

5.4.4 DeciderActor

The DeciderActor is responsible for determining which action should be performed

during executions of workflow instances. To this end, the DeciderActor receives events triggered

by the actors WorkflowInstanceActor and TaskActor and decides, based on the event handlers,

which command (e.g., start a workflow or a task) should be sent and to whom. The DeciderActor

does not store information in its internal state, and its behavior has a reactive nature.

The UML class diagram, illustrated in Figure 23, represents the DeciderActor class

and event that are captured during the execution of workflows and tasks. Similar to ReportActor,

the DeciderActor listeners to all events that are triggered WorkflowInstanceActor and TaskActor.

However, only the events that satisfy the conditions specified in the event handlers are processed.

In addition, as in the ReportActor, there are two event categories that may be processed: workflow

and task. In the workflow events, there are the following events: WorkflowScheduledEvent,

WorkflowStartedEvent, WorkflowCompletedEvent, WorkflowStoppedEvent, WorkflowFailedEvent,

and WorkflowCanceledEvent. In the task events, there are the following events: TaskStartedEvent,
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TaskFailedEvent, TaskCompletedEvent, and TaskTimeoutEvent.

Figure 23 – UML class diagram of DeciderActor

Source: Elaborated by the author.

5.5 STEP BY STEP

The Spring Cloud Beethoven platform has been designed to run as an infrastructure

microservice using a minimal setup. Therefore, there are few steps (illustrated in Figure 24) re-

quired to add the proposed platform to a microservices-based application. To this end, a software

engineer should follow these steps: (i) create Spring Boot project using a build automation (e.g.,

Maven or Gradle); (ii) add the required dependencies; (iii) configure the Spring Boot project;

(iv) add the workflow definitions; and (v) initialize the Spring Cloud Beethoven platform. As

follows, each step is described in details.

5.5.1 Step S-1

The first step consists of creating a Spring Boot project that is used as basis for

the Spring Cloud Beethoven platform. For this purpose, Spring Initializr10 may be used to

generate a Spring Boot project with its dependencies. In Spring Initializr, illustrated in Figure 25,

a developer needs to specify the build automation tool of project (Maven or Gradle), the

programming language (e.g., Java, Kotlin, or Groovy), the version of Spring Boot, the project

metadata (group ID and artifact ID), and a optional set of project dependencies.
10 <https://start.spring.io/>

https://start.spring.io/
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Figure 24 – Step by step guide

Source: Elaborated by the author.

Figure 25 – Spring Initializr main screen

Source: Elaborated by the author.

5.5.2 Step S-2

After creating a Spring Boot project, the software engineer should add the following

dependencies: (i) Spring Cloud Netflix Eureka; and (ii) Spring Cloud Beethoven. Listing 12

and Listing 13 demonstrate how to add the required dependencies in a Maven11 pom file or a

Gradle12 build file respectively.
11 <https://maven.apache.org/>
12 <https://gradle.org/>

https://maven.apache.org/
https://gradle.org/
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Code 12 – Maven dependencies� �
1 <dependency>
2 <groupId>org.springframework.cloud</groupId>
3 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
4 </dependency>
5 <dependency>
6 <groupId>io.beethoven</groupId>
7 <artifactId>beethoven-starter</artifactId>
8 <version>0.0.1</version>
9 </dependency>� �

Code 13 – Gradle dependencies� �
1 compile("org.springframework.cloud:spring-cloud-starter-netflix-eureka-client")
2 compile("io.beethoven:beethoven-starter:0.0.1")� �

5.5.3 Step S-3

In order to configure the Spring Boot project, the software engineer needs to con-

figure Eureka by using property configuration files. By default, Spring Boot searches for the

property file application.properties in the classpath. The minimal configuration file, illustrated

in Listing 21, is composed of the application name, the server HTTP port, the name of the

application to be registered with Eureka, and the Eureka service URL.

Code 14 – Minimal configuration� �
1 # Application configuration
2 spring.application.name=beethoven-service
3 server.port=9090
4

5 # Eureka configuration
6 eureka.instance.appname=beethoven-service
7 eureka.client.service-url.default-zone=http://localhost:8761/eureka/� �

5.5.4 Step S-4

The workflows defined in Partitur must be located in a folder named workflows in

the classpath. Thus, Spring Cloud Beethoven searches for the workflows definitions and load

them in order to create workflow instances when needed.
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5.5.5 Step S-5

In order to initialize the Spring Cloud Beethoven platform, the software engineer

must create a class and add following Java annotations: @EnableBeethoven and @Spring-

BootApplication. The first annotation enables the Beethoven platform to search for workflow

specifications and the second annotation enables autoconfiguration in a Spring-based application.

The created class needs to implement the main method that runs a Spring Boot application and

initialize the Beethoven platform using the initialize method as shown in Listing 15.

Code 15 – Spring Cloud Beethoven initialization� �
1 @EnableBeethoven
2 @SpringBootApplication
3 public class BeethovenApplication {
4 public static void main(String... args) throws Exception {
5 ApplicationContext context = SpringApplication.run(BeethovenApplication.

↪→ class, args);
6 ActorSystem actorSystem = context.getBean(ActorSystem.class);
7 Beethoven.initialize(actorSystem);
8 }
9 }� �
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6 EVALUATION

This chapter presents the evaluations that have been conducted in order to provide

empirical evidence for analyzing the benefits and trade-offs provided by the Beethoven platform.

In order to achieve this particular aim, two example applications have been developed and one

controlled experiment has been conducted. In Section 6.1, the first example application, which

is an implementation of an MSA-based application, is presented. In Section 6.2, the second

example application, which is an orchestrated version of reference application for microservices-

based applications, is exhibited. Finally, Section 6.3 presents the controlled experiment that has

been conducted in order to evaluate the possible overhead produced by the proposed platform

after the modification of the reference application.

6.1 EXAMPLE APPLICATION 1

In order to demonstrate the applicability and feasibility of the Beethoven platform, an

example application has been developed. An example application is a validation method used to

describe and validate a new type of tool, framework, methodology, model, or process in software

engineering that may be applied to evaluate phenomena, methods, techniques (SHAW, 2003).

The developed example application is a microservices-based application (available on GitHub1)

that implements a Customer Relationship Management (CRM) system for an investment bank.

The example application is composed of the following microservices:

costumer-service: manages the costumer registry;

profile-service: analyzes costumers’ history to define retention strategies;

email-service: sends welcome, promotion, and informational emails;

package-service: sends personalized packs;

account-service: sends credit/debit card, and letter within card password;

discovery-service: maintains a registry of service information;

api-gateway: servers as entry point for different clients;

config-service: manages and distributes the configuration for each microservice;

beethoven-service: manages and performs Partitur workflows.

The graphical representation of the example application architecture is illustrated

in Figure 26. As shown in Section 2.2, a microservices-based application is comprised of

infrastructure and business services. In the infrastructure layer, the example application consists
1 <https://github.com/davimonteiro/crm-msa-example>

https://github.com/davimonteiro/crm-msa-example
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of the following microservices: discovery-service, api-gateway, config-service, and beethoven-

service. In the business layer, the example application is formed of the following microservices:

costumer-service, profile-service, email-service, package-service, and ccount-service. Each

business microservice possesses its own database and communicates exclusively through HTTP

requests.

Figure 26 – CRM application’s architecture

Source: Elaborated by the author.

6.1.1 New customer process

In the CRM application, each microservice provides a business capability. For

instance, profile-service is responsible for investigating the costumers’ history in order to define

retention strategies. However, profile-service does not provide any additional functionality in

order to perform the operations that are required to instantiate the retention strategies. These

operations are performed by other microservices. For instance, in order to send a promotional

e-mail, which is a type of retention strategies, email-service should be invoked.

In this context, there is a distributed business process for new customers that is
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started after registering a new customer using the costumer-service. Next, the profile-service

analyzes the new customer profile to define which retention strategies should be used. In this

process, new customers should receive a welcome email (email-service), a personalized package

(account-service), and a letter that contains the card’s password and the account’s card (account-

service). Each business process step is performed by a specific microservice. The graphical

representation of the new customer process is depicted in Figure 27 using the UML activity

diagram notation.

Figure 27 – New customer process

Source: Elaborated by the author.

In order to model the new customer process as a Partitur workflow specification, the

methodology described in Section 5.5 has been used. As result, Code 16 has been produced and

registered in beethoven-service. Code 16 depicts a Partitur specification for the new customer

process. Line 1 declares a Partitur workflow definition using the keyword workflow and newCus-

tomerProcess as workflow name. Lines 2-26 define a set of tasks for creating a new customer,

analyzing the customer profile, sending the account card and password, sending a welcome

package, and sending a welcome e-mail. In other words, each declared task is responsible for

performing one step defined in the new customer process shown in Figure 27. For instance, the

step for creating a new customer is executed by the task named newCustomerProcess.

Lines 27-43 define three Partitur event handlers. The first one defines when the
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workflow named newCustomerProcess is scheduled, then the task named createNewCustomer

must be started. The second one defines when the task named createNewCustomer is finished,

then the task named analyzeCustomerProfile must be started. Finally, the third one defines when

the task named analyzeCustomerProfile is terminated, then the following tasks should be started:

sendWelcomeEmail, sendWelcomePackage, sendAccountCardAndPassword.

Code 16 – Partitur specification for the new customer process� �
1 workflow newCustomerProcess {
2 task createNewCustomer {
3 post("http://customer-service/customers")
4 .header("Content-Type", "application/json")
5 .body("${createNewCustomer.input}")
6 }
7 task analyzeCustomerProfile {
8 post("http://profile-service/profiles/analyze")
9 .header("Content-Type", "application/json")

10 .body("${createNewCustomer.response}")
11 }
12 task sendWelcomeEmail {
13 post("http://email-service/welcome")
14 .header("Content-Type", "application/json")
15 .body("${analyzeCustomerProfile.response}")
16 }
17 task sendWelcomePackage {
18 post("http://package-service/welcome")
19 .header("Content-Type", "application/json")
20 .body("${analyzeCustomerProfile.response}")
21 }
22 task sendAccountCardAndPassword {
23 post("http://account-service/cards-passwords")
24 .header("Content-Type", "application/json")
25 .body("${analyzeCustomerProfile.response}")
26 }
27 handler h1 {
28 on WORKFLOW_SCHEDULED
29 when workflowNameEqualsTo("newCustomerProcess")
30 then startTask("createNewCustomer")
31 }
32 handler h2 {
33 on TASK_COMPLETED
34 when taskNameEqualsTo("createNewCustomer")
35 then startTask("analyzeCustomerProfile")
36 }
37 handler h3 {
38 on TASK_COMPLETED
39 when taskNameEqualsTo("analyzeCustomerProfile")
40 then startTask("sendWelcomeEmail"),
41 startTask("sendWelcomePackage"),
42 startTask("sendAccountCardAndPassword")
43 }
44 }� �
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6.1.2 New versions of the new customer process

In order to illustrate how to apply modifications in the initial steps of the new

customer process, consider the following scenario: the regulatory agencies from the federal

government have imposed new requirements for the new customers in investment banks. These

requirements are related to the acquisition of information about the annual income of customers

that should be forwarded to the regulatory agencies using their web services. In order to

implement these requirements, a new step must be added to the new customer process for

sending customer information to the regulatory agencies. This modification can be done by

adding a new task in the Partitur specification (off-line modifications) or by modifying the

business process at runtime using the Beethoven’s API (online modifications).

In order to apply off-line modification on the new costumer process, the following

activities must be performed: (i) interrupt beethoven-service; (ii) modify the Partitur specification

of the new costumer process by adding a new task to send the income information of the new

customers and adding an event handler to start the new task; and (iii) restart beethoven-service

in order to utilize the new Partitur specification of the new costumer process for creating new

workflow instances. After the modification has been applied and beethoven-service has been

restarted, new workflow instances will use the new specification during their execution.

In order to apply online modification on the new customer process, it is possible

to use the Beethoven’s API for adding a new task to send the income information of the new

customers and update an existing event handler to start the new task. To this end, the HTTP

request presented in Code 17 is used to add a new task named sendCostumerIncomeData to

the new customer process and the HTTP request presented in Code 18 is used to update the

event handler h3 for starting sendCostumerIncomeData after analyzeCustomerProfile has been

completed. Thus, by using the Beethoven’s API, there is no need to interrupt beethoven-service

in order to apply modifications in the Partitur specification of the new customer process. After

the modification has been applied, new workflow instances will use the new specification during

their execution.



87

Code 17 – Adding a new task� �
1 POST /api/workflows/newCustomerProcess/tasks HTTP/1.1
2 Content-Type: application/json
3

4 {"name":"sendCostumerIncomeData",
5 "httpRequest":{
6 "url":"http://income-tax.gov/new-custumers",
7 "method":"POST",
8 "headers":[{"name":"Content-Type","value":"application/json"}]
9 }

10 }� �
Code 18 – Updating an event handler� �

1 PUT /api/workflows/newCustomerProcess/handlers/h3 HTTP/1.1
2 Content-Type: application/json
3

4 {
5 "name":"h3",
6 "eventType":"TASK_COMPLETED",
7 "conditions":[{"conditionFunction":{"taskName":"analyzeCustomerProfile"}}],
8 "commands":[
9 {"operation":"START_TASK","taskName":"sendWelcomeEmail"},

10 {"operation":"START_TASK","taskName":"sendWelcomePackage"},
11 {"operation":"START_TASK","taskName":"sendAccountCardAndPassword"},
12 {"operation":"START_TASK","taskName":"sendCostumerIncomeData"}
13 ]
14 }� �

6.2 EXAMPLE APPLICATION 2

In order to reduce the research bias during evaluation of the proposed platform,

a second example application has been developed. However, instead of implementing a new

microservices-based application to demonstrate the feasibility of the Beethoven platform, an

existing microservices-based application has been adapted in order to use the Beethoven platform

for performing microservice composition in distributed business processes. The second example

application is based on a reference application (available on GitHub2) for an online web store

that has been developed to demonstrate the best practices (see Section 2.2.2) for building

microservices using Spring Boot3 and Spring Cloud4. The reference application is composed of

the following microservices:

account-service: responsible for managing the account information of users;
2 <https://github.com/kbastani/spring-cloud-event-sourcing-example>
3 <https://projects.spring.io/spring-boot>
4 <https://cloud.spring.io>

https://github.com/kbastani/spring-cloud-event-sourcing-example
https://projects.spring.io/spring-boot
https://cloud.spring.io
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catalog-service : responsible for retrieving the active catalog of products for the online store;

inventory-service: responsible for managing the inventory and product catalogs ordered;

online-store-web: responsible for serving as the main user interface of the online store;

order-service: responsible for providing an API to facilitate the ordering of products;

shopping-cart-service: responsible for providing an API that manages the products that a user

has chosen to add to their online shopping cart;

user-service: responsible for providing the authentication gateway for the application;

discovery-service: responsible for maintaining a registry of service information;

hystrix-service: responsible for providing a dashboard used to monitor circuit breakers;

api-gateway: responsible for securely exposing routes from microservices to consumers;

config-service: responsible for distributing external configurations for each microservice;

beethoven-service: responsible for managing and performing Partitur workflows.

The reference application architecture, graphically represented in Figure 28, is

composed of sets of infrastructure and business microservices. In the infrastructure layer, the

reference application is composed of the following microservices: discovery-service, hystrix-

service, api-gateway, config-service, and beethoven-service. Each infrastructure microservice

provides a support functionary for the reference application (e.g., service discovery, externalized

configuration, or service composition). In the business layer, the reference application is formed

of the following microservices: account-service, catalog-service, inventory-service, order-

service, shopping-cart-service, and user-service. Each business microservice provides a business

capability and accesses its own database. In addition to infrastructure and business microservices,

there is one microservice named online-store-web responsible for providing the user interface as

a web application for the online shopping store.

6.2.1 Checkout process

In the reference application, each microservice is responsible for running one single

business capability. However, shopping-cart-service accumulates two responsibilities: managing

the shopping cart and running the checkout process. The checkout process requires the collabo-

ration of different microservices in order to be performed. To this end, the checkout business

process, shown in Figure 29, is composed of the following activities: (i) collect the items that

have been added from the shopping cart; (ii) checks the availability of the selected item; (iii)

create a new order if the selected items are available; (iv) if the order is successfully created,
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Figure 28 – Reference application’s architecture

Source: Elaborated by the author.

then clear the shopping cart and create an event that represents the successful order. Since

each activity is performed by a particular microservice (e.g., inventory-service, catalog-service,

or order-service), thereby, there is a necessity to coordinate microservices in a given order to

perform the activities of the checkout process.

In the original version of the reference application, there is a method named checkout

that is responsible for implementing the checkout process. In the checkout method, illustrated in

Code 19, each activity from the checkout process (see Figure 29) is imperatively implemented

using the general purpose Java programming language. In order to simplify, some details of the

checkout method have been omitted. The completed version of the checkout method is available

on GitHub. In the checkout method, Lines 2-8 are responsible for collecting the items that have
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Figure 29 – The checkout process

Source: Elaborated by the author.

been added by the user (first activity). Next, if the shopping cart is not empty, then the availability

of the selected items should be verified (second activity). After that, Lines 25-33 are responsible

for creating a new order (third activity). If the order is successfully created, then two activities

must be performed: clear the shopping cart (forth activity) and create an event for the successful

order (fifth activity). In the following subsection, the possible concerns induced by this approach

are highlighted.
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Code 19 – The checkout method� �
1 public CheckoutResult checkout() throws Exception {
2 CheckoutResult checkoutResult = new CheckoutResult();
3 ShoppingCart currentCart = null;
4 try {
5 currentCart = getShoppingCart();
6 } catch (Exception e) {
7 log.error("Could not retrieve shopping cart", e);
8 }
9 if (currentCart != null) {

10 Inventory[] inventory =
11 oAuth2RestTemplate.getForObject(
12 String.format(
13 "http://inventory-service/v1/inventory?productIds=%s",
14 currentCart.getLineItems()
15 .stream()
16 .map(LineItem::getProductId)
17 .collect(Collectors.joining(","))), Inventory[].class);
18 if (inventory != null) {
19 Map<String, Long> inventoryItems = Arrays.asList(inventory)
20 .stream()
21 .map(inv -> inv.getProduct().getProductId())
22 .collect(groupingBy(Function.identity(), counting()));
23 if (checkAvailableInventory(
24 checkoutResult, currentCart, inventoryItems)) {
25 Order orderResponse = oAuth2RestTemplate.postForObject(
26 "http://order-service/v1/orders",
27 currentCart.getLineItems().stream()
28 .map(prd ->
29 new demo.order.LineItem(prd.getProduct().getName(),
30 prd.getProductId(), prd.getQuantity(),
31 prd.getProduct().getUnitPrice(), TAX))
32 .collect(Collectors.toList()),
33 Order.class);
34

35 if (orderResponse != null) {
36 checkoutResult.setResultMessage("Order created");
37 oAuth2RestTemplate.postForEntity(
38 String.format("http://order-service/v1/orders/%s/events",
39 orderResponse.getId()),
40 new OrderEvent(OrderEvent.OrderEventType.CREATED,
41 orderResponse.getId()), ResponseEntity.class);
42 checkoutResult.setOrder(orderResponse);
43 }
44

45 User user = oAuth2RestTemplate.getForObject(
46 "http://user-service/uaa/v1/me", User.class);
47 addCartEvent(new CartEvent(
48 CartEvent.CartEventType.CHECKOUT, user.getId()), user);
49 }
50 }
51 }
52 return checkoutResult;
53 }� �
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6.2.2 Issues with the original version

Gradually, the checkout process may evolve and it will be necessary to modify its

initial activities. For instance, the federal, state, and local governments may impose new taxes

for every sale at any online store. Therefore, in order to implement that new requirement, it

will be necessary to modify the checkout process that is executed by the shopping-cart-service.

Furthermore, new software requirements may arise from other sources (e.g., internal process,

new marketing strategies, and so on). Consequently, after modifying the checkout process, it will

be necessary a downtime of the online store application in order to update shopping-cart-service.

Although the reference application utilizes a set of best practices for building

microservices-based applications, it infringes one of the main principles proposed by the mi-

croservices architectural style: componentization via services. In the microservices architectural

style, componentization is performed at the level of services that must have only a single respon-

sibility. However, to execute the checkout process, the reference application utilizes one of the

SOA concepts: composed services. Composed services are services that access and depended on

multiple services to provide business functionalities by executing workflows.

A software architectural style defines a set of principles that are used as constraints

on a software architecture (PERRY; WOLF, 1992; GARLAN; SHAW, 1994). Since the microser-

vices architecture is a software architectural style, its principles, characteristics, and constraints

must be obeyed in order to develop microservices-based applications. Otherwise, the benefits

proposed by this architectural style will not be experienced.

As a consequence of the adoption of the concept of composed services for building

shopping-cart-service, the reference application centralizes the entire business process logic

into a single microservice causing the following drawbacks: (i) difficulty in maintaining the

business process since a composed microservice is depended on multiple microservices in order

to execute business processes; (ii) high coupling between the microservice that executes the

business process and the other microservices responsible for performing each activity of the

business process; (iii) system downtime to apply changes in the particular microservice that is

responsible for executing the business process; (iv) very elaborated business process for simple

steps since it is required to handle possible exceptions that may occur during the execution of a

business process.
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6.2.3 Beethoven version

In order to compose the microservices responsible for executing the checkout process

using the Beethoven platform, a new version of this process has been created. To this end, the

following activities have been carried out: (i) creating new endpoints for each microservice

responsible for performing an activity of the checkout business process; (ii) specifying the

checkout process in the Partitur language; (iii) configuring the Beethoven platform in the

reference architecture; (iv) performing HTTP requests to the Beethoven’s API in order to manage

the execution of the checkout process. Each activity is explained in detail as follows.

(i) Creating new endpoints — In order to create a new version of the checkout

business process, new endpoints have been created for each microservice that performs a

step in the checkout business process. For example, in order to retrieve the items that have

been added to the shopping cart in the original version of the reference application, the fol-

lowing endpoint should be used "http://shopping-cart-service/v1/cart"; in contrast, to use the

version orchestrated by Beethoven, the following endpoint has been created "http://shopping-cart-

service/v1/cart/orchestrated". In this manner, two functional versions of the checkout business

process have been maintained: one version that applies the concept of SOA named composed

service and another version that utilizes the Beethoven platform in order to execute the checkout

process.

(ii) Specifying the business process — In order to specify the checkout process

in the Partitur language, the Code 20 has been created. In the first line, the workflow named

checkoutProcess is declared. Next, thought lines 2-27, five tasks have been created using a

contextual input in the header definition for a particular OAuth access token authorization. The

fist task (lines 2-5) named getShoppingCart is responsible for retrieving shopping cart items.

The second task (lines 6-11) named checkAvailableInventory is responsible for checking avail-

ability of selected items. The checkAvailableInventory task receives a contextual input (line

10) from the response of getShoppingCart. The third task (lines 12-17) named createNewOrder

is responsible for creating a new order, receiving a contextual input from the response of

checkAvailableInventory. The forth task (lines 18-23) named createSuccessfulOrderEvent

is responsible for creating an event that represents a successful order. The forth task receives

a contextual input (line 22) from the response of createNewOrder. The last task (lines 24-27)

named clearShoppingCart is responsible for cleaning the shopping cart.
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Code 20 – Partitur specification for the checkout process� �
1 workflow checkoutProcess {
2 task getShoppingCart {
3 get("http://shopping-cart-service/v1/cart/orchestrated")
4 .header("Authorization", "${access_token}")
5 }
6 task checkAvailableInventory {
7 post("http://inventory-service/v1/inventory/checkavailable/orchestrated")
8 .header("Content-Type", "application/json")
9 .header("Authorization", "${access_token}")

10 .body("${getShoppingCart.response}")
11 }
12 task createNewOrder {
13 post("http://order-service/v1/orders/orchestrated")
14 .header("Content-Type", "application/json")
15 .header("Authorization", "${access_token}")
16 .body("${checkAvailableInventory.response}")
17 }
18 task createSuccessfulOrderEvent {
19 post("http://order-service/v1/orders/events/orchestrated")
20 .header("Content-Type", "application/json")
21 .header("Authorization", "${access_token}")
22 .body("${createNewOrder.response}")
23 }
24 task clearShoppingCart {
25 post("http://shopping-cart-service/v1/cart/clear/orchestrated")
26 .header("Authorization", "${access_token}")
27 }
28 handler h1 {
29 on WORKFLOW_SCHEDULED
30 when workflowNameEqualsTo("checkoutProcess")
31 then startTask("getShoppingCart")
32 }
33 handler h2 {
34 on TASK_COMPLETED
35 when taskNameEqualsTo("getShoppingCart")
36 then startTask("checkAvailableInventory")
37 }
38 handler h3 {
39 on TASK_COMPLETED
40 when taskNameEqualsTo("checkAvailableInventory")
41 then startTask("createNewOrder")
42 }
43 handler h4 {
44 on TASK_COMPLETED
45 when taskNameEqualsTo("createNewOrder")
46 then startTask("clearShoppingCart"),
47 startTask("createSuccessfulOrderEvent")
48 }
49 }� �

After defining a set of tasks, four event handlers have been specified thought lines

28-48. The first event handler (lines 28-32) named h1 is composed of the following structure:

when WORKFLOW_SCHEDULED occurs, if workflow name is equal to checkoutProcess, then

start the getShoppingCart task. The second event handler (lines 33-37) named h2 is composed of

the following structure: when TASK_COMPLETED occurs, if task name is equal to getShopping-

Cart, then start the checkAvailableInventory task. The third event handler (lines 38-42) named h3
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is composed of the following structure: when TASK_COMPLETED occurs, if task name is equal

to checkAvailableInventory, then start the createNewOrder task. Finally, the fourth event handler

(lines 43-48) named h4 is composed of the following structure: when TASK_COMPLETED

occurs, if task name is equal to createNewOrder, then start the clearShoppingCart and create-

SuccessfulOrderEvent tasks.

(iii) Configuring the Beethoven platform — The configuration file used the YAML

extension and is presented in Code 21. In lines 1-3, the service name is defined in order to allow

the microservices of the reference application to access the Beethoven platform by its service

name. For instance, considering only the microservices that are part of the reference application,

it is possible to use the following URL to access the Beethoven endpoints: http://beethoven-

service/. Then, in lines 4-15, the OAuth2 configuration is implemented as specified by the

OAuth2 server that has the following endpoint: http://auth-service/. Finally, in lines 16-23, the

discovery service configuration is presented. Specifically, the reference application relies on

Eureka5 for locating services.

Code 21 – Beethoven configuration� �
1 spring:
2 application:
3 name: beethoven-service
4 security:
5 oauth2:
6 resource:
7 userInfoUri: http://auth-service/uaa/user
8 client:
9 client-id: acme
10 access-token-uri: http://auth-service
11 enable-csrf: false
12 ignored: /api/**
13 user:
14 password: admin
15 name: admin
16 eureka:
17 instance:
18 prefer-ip-address: true
19 client:
20 registerWithEureka: true
21 fetchRegistry: true
22 serviceUrl:
23 defaultZone: http://localhost:8761/eureka/� �

(vi) Managing the execution of the business process — As mentioned earlier, an

original version of the checkout process has been maintained and a new version of this process

has been created to execute it using the Beethoven platform. The new method responsible for

executing the checkout process is listed in Code 22. In lines 2-3, a contextual input is instantiated
5 <https://github.com/Netflix/eureka>

https://github.com/Netflix/eureka
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with the OAuth access token that is used to authorize requests from the Beethoven platform.

Next, in lines 5-8, a Beethoven command is instantiated with the name of the workflow that

should be executed, a command operation to schedule the execution of the checkout process, and

the contextual input that has been created in lines 2-3. After that, in lines 10-12, a POST request

is performed to the endpoint that is responsible to receive commands to a particular workflow. In

this request, the command that was instantiated in the previous lines of the method is passed as

the request body.

Code 22 – Beethoven checkout method� �
1 public CheckoutResult checkoutOrchestrated() {
2 OAuth2AccessToken accessToken = oAuth2RestTemplate.getAccessToken();
3 Set<ContextualInput> inputs = newHashSet(new ContextualInput(accessToken));
4

5 BeethovenOperation beethovenOperation = new BeethovenOperation();
6 beethovenOperation.setWorkflowName("checkoutProcess");
7 beethovenOperation.setOperation(SCHEDULE.getId());
8 beethovenOperation.setInputs(inputs);
9

10 restTemplate.postForEntity(
11 "http://beethoven-service/api/workflows/checkoutProcess/operations",
12 beethovenOperation, BeethovenOperation.class);
13

14 return new CheckoutResult();
15 }� �
6.2.4 Benefits

The benefits delivered by the Beethoven platform are related to the quality attributes

that have been collected during the process of domain analysis in the definition of the reference ar-

chitecture. As benefits, the Beethoven platform provides knowledge reuse, process effectiveness,

process expressibility, and process expressibility. Each benefit is discussed below.

6.2.4.1 Knowledge reuse

The knowledge reuse is achieved through reusing existing microservices in order to

implement new declarative business processes. In addition, by avoiding composed microservices,

a microservice-based application does not violate the principle of the microservices architecture

style. Another manner to achieve knowledge reuse is by reusing the existing declarative business

processes or parts of them in order to create new declarative business processes.
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6.2.4.2 Process flexibility

Process flexibility is achieved through the ability to apply modifications to declarative

business processes during at both design and run-time. The Beethoven platform provides API

for managing declarative business processes in terms of workflows, tasks, and event handlers.

For instance, it is possible to alternate a particular event handler from a specific workflow during

the execution of a workflow instance. Thus, by using the Beethoven platform for orchestrating

microservices, there is no necessity to interrupt the execution of any microservice for applying

modifications to business processes.

6.2.4.3 Process effectiveness

In order to provide process effectiveness, the Beethoven platform monitors the

execution for each declarative business process in terms of elapsed time of the tasks executed

successfully, causes failures of tasks performed unsuccessfully (e.g., timeout, HTTP request

errors, or exceptions), states assumed during the execution of each workflow instance, and

throughput of workflow executions per time. The architectural component responsible for

providing process effectiveness is Report Event Processor (in Beethoven’s reference architecture)

or ReportActor (in Beethoven’s concrete architecture).

6.2.4.4 Process expressibility

Process expressibility refers to the ability to express a business process using ele-

ments such as control flow, input data, execution and temporal information. The Beethoven

platform provides process expressibility through the features offered by the Partitur language.

For instance, it is possible to express control flow and temporal information using the Partitur

event handler definition. In addition, the Partitur language adopts a data-driven execution model

for specifying the input of data to a specific task from the result obtained after performing another

task.

6.3 QUASI-EXPERIMENT

In order to analyze the performance difference between the original and orchestrated

versions of the checkout process presented in the reference application, a controlled quasi-

experiment has been conducted. Experiments may be human-oriented or technology-oriented. In
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technology-oriented experiments, typically different tools are applied to different objects, for

example, two test case generation tools are applied to the same programs (WOHLIN et al., 2012).

The research protocol is composed of the following steps: experiment scoping, experiment

planning, analysis and interpretation, presentation and package, and experiment report.

6.3.1 Research protocol

6.3.1.1 Objective definition

The objective of the presented experiment is to investigate the performance assess-

ment of the execution of microservice composition by using the Beethoven platform, from the

checkout business process of the reference application presented in Section 6.2. The experiment,

as reported here, is part of a larger evaluation of the Beethoven platform focusing on the possible

overhead and trade-off that are caused by the platform after orchestrating the original version

of the reference application. Since the business processes of the reference application cannot

be randomly assigned to subjects, the experiment is, in fact, a quasi-experiment. For the sake

of simplicity, only two hypotheses are evaluated here. The data set for the larger study can be

found on GitHub6. The experiment presented in this chapter uses a subset of the data.

6.3.1.2 Research questions

In order to achieve the aforementioned objective, the following research questions

have been formulated:

RQ1: What is the performance difference between the execution of the checkout business

process performed in the original and orchestrated versions of the reference application?

The purpose of this questions is to provide empirical evidence for addressing the objective of the

presented experiment by investigating the performance difference between the checkout business

process performed in the original and orchestrated versions of the reference application. To this

end, this question has been divided into two research questions: RQ1.1 and RQ1.2.
6 <https://github.com/davimonteiro/performance-evaluation>

https://github.com/davimonteiro/performance-evaluation
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RQ1.1: What is the execution time of the checkout business process performed in the

original version of the reference application?

The purpose of this questions is to provide performance data by executing the checkout business

process in the original version of the reference application using different testing scenarios and

collecting the execution time for each process that has been executed successfully. In addition,

information about success and failure rate for each execution is collected.

RQ1.2: What is the execution time of the checkout business process performed in the

orchestrated version of the reference application?

The purpose of this questions is to provide performance data by executing the checkout business

process in the orchestrated version of the reference application using different testing scenarios

and collecting the execution time for each process that has been executed successfully. In

addition, information about success and failure rate for each execution is collected.

6.3.1.3 Hypotheses

In software engineering, software performance engineering represents the entire

collection of software engineering activities and related analyses used during the software

development cycle, which are directed to satisfy performance requirements (WOODSIDE;

FRANKS; PETRIU, 2007). Software performance is evaluated from a user’s perspective and

is typically assessed in terms of quality attributes of the system such as throughput, scalability,

reliability, and resource usage. In the presented experiment, the quality attribute used to measure

the performance overhead is the time required to execute a specific instance of a business process.

This leads to the formulation of the following hypotheses:

• H01. The Beethoven platform does not cause performance overhead during the orchestra-

tion of the checkout business process.

• H11. The Beethoven platform causes performance overhead during the orchestration of the

checkout business process.

6.3.1.4 Variables

The independent variables are the number of simultaneous users performing the

checkout business process and the number of items that a user has added to the shopping cart.
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The dependent variable is the execution/elapsed time that is required to execute a specific instance

of the checkout business process.

6.3.2 Research setup

The computational environment used in the present experiment is composed of a

MacBook Pro (Retina, 13-inch, Late 2013) with 2.4 GHz Intel Core i5 (I5-4258U), 8GB of RAM

(1600 MHz DDR3), and Intel Iris with 1536 MB. The machine used for the tests runs macOS

High Sierra (version 10.13.5), Java (TM) SE Runtime Environment (build 1.8.0_45—b14), Java

HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode), and Apache Maven 3.5.07.

The Gatling testing tool8 has been used for simulating users requesting an HTTP

resource. Gatling is an open-source load and performance testing framework that provides an

asynchronous architecture implemented in a non-blocking way for creating virtual users as

messages instead of dedicated threads. Gatling is designed to be used as a load testing tool for

analyzing and measuring the performance of web applications. By using Gatling, it possible to

run thousands of concurrent virtual users.

In order to run Gatling tests, the scenario template in Code 23 has been specified.

The scenario template is a simulation file that includes a definition of an HTTP request (line 8),

a feed data of products from a CSV file (line 10), and a feed data of user credential data from a

CSV file (line 12). In Gatling tests, feed data is a special type of data that is read from a source

of data (e.g., JSON file, CSV file, or text file). In addition, the scenario template is composed of

a definition of a scenario named Performance simulation (line 14). Performance simulation is

composed of the following HTTP requests: (i) Perform login (lines 20-31); (ii) Add items to the

shopping cart (lines 35-40); and (iii) Perform the checkout process (lines 44-47). Finally, in line

51, the scenario definition is executed using a specific number of simultaneous users.
7 <https://maven.apache.org/>
8 <https://gatling.io/>

https://maven.apache.org/
https://gatling.io/
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Code 23 – Template for testing scenarios� �
1 import io.gatling.core.Predef._

2 import io.gatling.http.Predef._

3

4 import scala.concurrent.duration._

5

6 class PerformanceSimulation extends Simulation {
7

8 val httpProtocol = http
9

10 val products = csv("products.csv").queue
11

12 val users = csv("user_credentials.csv").queue
13

14 val scn = scenario("Performance simulation")
15 .repeat(30) {
16 pause(10 seconds)
17 feed(users)
18 feed(products)
19 .exec(
20 http("Perform login")
21 .post("http://localhost:8181/uaa/oauth/token")
22 .header("Authorization", "Basic YWNtZTphY21lc2VjcmV0")
23 .header("Content-Type", "application/x-www-form-urlencoded")
24 .formParam("username", "${username}")
25 .formParam("password", "${password}")
26 .formParam("grant_type", "password")
27 .formParam("scope", "openid")
28 .formParam("client_id", "acme")
29 .formParam("client_secret", "acmesecret")
30 .check(jsonPath("$.access_token").exists.saveAs("token"))
31 .check(status is 200)
32 )
33 .pause(2 seconds)
34 .exec(
35 http("Add items to the cart")
36 .post("http://localhost:8957/v1/events")
37 .header("Authorization", "Bearer ${token}")
38 .header("Content-Type", "application/json")
39 .body(StringBody("${product}")).asJSON
40 .check(status is 200)
41 )
42 .pause(2 seconds)
43 .exec(
44 http("Perform the checkout process")
45 .post("http://localhost:8957/v1/checkout")
46 .header("Authorization", "Bearer ${token}")
47 .check(status is 200)
48 )
49 }
50

51 setUp(scn.inject(atOnceUsers(1))).protocols(httpProtocol)
52

53 }� �
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6.3.3 Research procedure

The aim of the experiment is to investigate whether the Beethoven platform causes a

performance overhead on the execution of the checkout business process presented in the original

version of the reference microservices-based application. To this end, the experiment design is

two factor with three treatments. The factors in the experiment are the number of simultaneous

users and the number of items in the shopping cart. For the experiment design, the following

treatments have been used:

Treatments for the first factor (simultaneous user)

• 1 simultaneous user

• 10 simultaneous users

• 20 simultaneous users

Treatments for the second factor (items in the shopping cart)

• 1 item add to the shopping cart

• 10 item add to the shopping cart

• 20 item add to the shopping cart

In order to conduct the experiment design, six different execution scenarios have

been prepared based on the template for testing scenarios presented in Code 23. An execution

scenario is composed of the following activities: (i) performing the login process using user

credentials from a CSV file and retrieving an access token from OAuth2 Server (user-service);

(ii) adding a specific number of items using products from a CSV file to the shopping cart

(shopping-cart-service); and (iii) performing the checkout process (shopping-cart-service).

The definition of scenarios has been done following the complete factorial exper-

iment, in which each scenario execution has been repeated 30 times, having the confidence

interval in the results with 99% of confidence. In Table 11, each execution scenario is presented.

The scenarios have been divided into two groups: the original version and the orchestrated

version. The former represents the scenarios that have been executed on the original version of

the checkout business process, while the latter represents the scenarios that have been executed

on the orchestrated version of the checkout business process.
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Table 11 – Execution scenarios

Scenario Version Simultaneous users Number of items

1 Original 1 1
2 Original 10 10
3 Original 20 20
4 Orchestrated 1 1
5 Orchestrated 10 10
6 Orchestrated 20 20

Source: Elaborated by the author.

6.3.4 Research results

The results presented in this section are based on performance data from the execution

of workflow instances that can be found on GitHub9. For each execution of a workflow instance,

the following data have been stored: workflow name, workflow instance name, start time, end

time, elapsed time, and successful execution. In the following subsection, the answers to the

research questions are presented and the hypotheses are evaluated using statistical methods.

The execution time of the checkout business process performed in the original version of

the reference application (RQ1.1)

The purpose of RQ1.1 is to collect performance data from the execution time of

the checkout business process performed in the original version of the reference application.

Thus, in order to answer the RQ1.1, the performance data from scenarios of G1 have been used

for collecting the elapsed time of each workflow instance. Based on the collected data, the

following information about a workflow instance has been extracted: the minimum elapsed time,

the maximum elapsed time, the average, the median, the success rate, and the failure rate.

As result, the scenario 1 produces the following results: (i) minimum elapsed time

in milliseconds: 1575; (ii) maximum elapsed time in milliseconds: 3085; and (iii) average

of elapsed time in milliseconds: 1753.9666. The scenario 2 produces the following results:

(i) minimum elapsed time in milliseconds: 5293; (ii) maximum elapsed time in milliseconds:

61270; and (iii) average of elapsed time in milliseconds: 31455.5833. The scenario 3 produces

the following results: (i) minimum elapsed time in milliseconds: 8231; (ii) maximum elapsed

time in milliseconds: 90222; and (iii) average of elapsed time in milliseconds: 34714.4534.

Table 12 summarizes the results from each scenario presented in G1.
9 <https://github.com/davimonteiro/performance-evaluation>

https://github.com/davimonteiro/performance-evaluation


104

During the execution of workflow instances, only the information concerning in-

stances that have been executed successfully have been registered, following the purpose of the

research question RQ1.1 defined in Section 6.3.1.2. Therefore, the minimum, maximum, average,

and median have been calculated based on successful execution of workflow instances. In order

to provide information regarding the number of workflows that have been executed successfully,

the success and failure rates have been calculated. As can be seen in Table 12, the first scenario

has a success rate of 100% and a failure rate of 0% because the reference application can handle

the requests performed during the execution of this scenario.

However, in scenarios 2 and 3, the success rates are, respectively, 96% and 55.50%.

This occurred because the reference application cannot handle the requests generated during the

execution of these scenarios. This information confirms that the reference application, within

what has been scaled in terms of computational infrastructure, is beyond its normal operational

capacity during the execution of scenarios 2 and 3. As result, the circuit breakers of each

microservice that comprised the reference application have been opened in order to isolate

failures and timeouts that may cascade to the entire microservices-based application.

Table 12 – Results of G1

Scenario Minimum (ms) Maximum (ms) Average (ms) Median (ms) Success rate Error rate

S1 1575 3085 1753.966667 1683 100% 0%
S2 5293 61270 31455.58333 26815.5 96% 4%
S3 8231 90222 34714.4534 35140 55.50% 44.50%

Source: Elaborated by the author.

The execution time of the checkout business process performed in the orchestrated version

of the reference application (RQ1.2)

The purpose of RQ1.2 is to collect performance data from the execution time of the

checkout business process performed in the orchestrated version of the reference application.

Therefore, in order to answer the RQ1.2, the performance data from the scenarios of G2 have

been used for collecting the elapsed time of each workflow instance. Based on the collected data,

the following information about a workflow instance has been extracted: the minimum elapsed

time, the maximum elapsed time, the average, the median, the success rate, and the failure rate.

As result, the scenario 4 produces the following results: (i) minimum elapsed time in

milliseconds: 885; (ii) maximum elapsed time in milliseconds: 1784; and (iii) average of elapsed
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time in milliseconds: 1023.8. The scenario 5 produces the following results: (i) minimum elapsed

time in milliseconds: 1794; (ii) maximum elapsed time in milliseconds: 32581; and (iii) average

of elapsed time in milliseconds: 13265.3211. The scenario 6 produces the following results: (i)

minimum elapsed time in milliseconds: 182; (ii) maximum elapsed time in milliseconds: 40619;

and (iii) average of elapsed time in milliseconds: 16667.5943. Table 13 summarizes the results

from each scenario presented in G2. As mentioned in the answer to question RQ1.1, only the

information regarding instances executed successfully have been registered. As can be seen in

Table 12, the scenario 4 has a success rate of 100% and the scenarios 5 and 6 have a success rate

of 72.67% and 46.83% respectively.

Table 13 – Results of G2

Scenario Minimum (ms) Maximum (ms) Average (ms) Median (ms) Success rate Error rate

S4 885 1784 1023.8 939 100% 0%
S5 1794 32581 13265.3211 12047 72.67% 27.33%
S6 182 40619 16667.59431 17333 46.83% 53.17%

Source: Elaborated by the author.

The performance difference between the execution of the checkout business process per-

formed in the original and orchestrated versions of the reference application (RQ1)

The purpose of RQ1 is to provide empirical evidence for investigating the per-

formance difference between the checkout business process performed in the original and

orchestrated versions of the reference application. To this end, the performance data collected

during the execution of the testing scenarios from G1 and G2 have been used to execute hypothe-

sis testing and visualize the performance difference between the execution time of the checkout

business process performed in the original and orchestrated versions.

The visualization of the performance difference is achieved by the bubble chat

presented in Figure 30. Bubble charts expose correlations between three points of data in a series:

x values, y values, and sizes. In the presented bubble chart, the x values are composed of the

execution scenarios used during the experiment, the y values are composed of the number of

simultaneous users using for executing each scenario, and the sizes are composed of the average

of elapsed time consumed during the execution of a business process in milliseconds.

In Figure 30, the first three bubbles represent the scenarios 1, 2, and 3, while the last

three bubbles represent the scenarios 4, 5, and 6. By comparing the two groups of scenarios,
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it is possible to notice that the bubbles of the second group have a smaller size when they are

compared to the size of bubbles of the first group. In the following section, the size difference

among those bubbles are evaluated statistically.

Figure 30 – Results in bubble chart

Source: Elaborated by the author.

6.3.4.1 Hypothesis testing

The execution scenarios have been divided into two groups (G1 and G2) as mentioned

in Section 6.3.1.3. The former represents the scenarios that have been executed on the original

version, while the latter represents the scenarios that have been executed on the orchestrated

version. As result, each scenario produces a set of elapsed time that is required to execute one

instance of the checkout business process. The data produced by the execution scenarios have

been used to perform the hypothesis testing. In this context, the objective of this experiment

is to investigate if G1 < G2, which means if the elapsed time of the execution of the checkout

business process in the orchestrated version is greater than the elapsed time of the execution of

the checkout business process in the original version.

The Mann-Whitney-Wilcoxon test is applied to evaluate the hypothesis that the

Beethoven platform causes performance overhead during microservice composition. The results

from Wilcoxon test are shown in Table 14, which presents the elapsed time averages, standard

deviation, the p-value, effect size between the G1 and G2. From Table 14, considering a
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confidence level of 99%, α = 0.01, it can be concluded that the difference in terms of the

average of elapsed time between G1 and G2 is statistically significant since the effect size is

large for all scenarios. In the comparison between the scenarios 1 and 4, the Beethoven platform

causes a performance improvement of 41.16%. In the comparison between the scenarios 2 and

3, the Beethoven platform improves the performance of microservice composition in 57.82%.

Finally, in in the comparison between the scenarios 4 and 6, the Beethoven platform improves

the performance of microservice composition in 51.98%. Therefore, H11 is rejected considering

the comparison among all execution scenarios. The actual reason for the difference has to be

further evaluated.

Table 14 – Elapsed time averages, standard deviation, p-values, and effect sizes

Scenarios Elapsed time average Standard deviation p-value Â12G1 G2 G1 G2

S1 and S4 1753.967 1023.8 270.8196 216.7577 9.27378e-10 0.9605556 (large)
S2 and S5 31455.58 13265.32 12924.34 6971.667 6.411714e-48 0.8772856 (large)
S3 and S6 34714.45 16667.59 15889.22 8770.868 1.751488e-51 0.8532696 (large)

Source: Elaborated by the author.

6.3.5 Threats to validity

A fundamental question concerning results of an experiment is their validity. There-

fore, during the condition of the experiment, some concerns about the validity of the research

protocol, setup, procedure have been recognized.

External—The reference MSA-based application represents an external threat to

validity since the results of the experiment cannot be generalized based on only one application.

However, since microservices is a new topic in the scientific and industry communities, there is

no repository of open source projects containing a microservices-based application that execute

distributed business processes.

Internal—The experiment setup is limited. Ideally, it should be used a cloud

infrastructure and each microservice should run on a particular container (e.g., Docker). However,

due time and budget constraints, the ideal scenario is not practical. In addition, the number

of execution scenarios and the independent variables may present limitations to generalize the

results. Another threat is that the experiment has been planned, conducted, and documented by

the author.
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7 CONCLUSION

This final chapter brings this dissertation to a conclusion. To this end, Section 7.1

summarizes the main contributions, shows how to the limitations of the related works have

been addressed, presents the results from the evaluations (two example applications and one

quasi-experiment), and exhibits how the specific objectives have been accomplished. After that,

Section 7.3 presents a list of published papers as a result of the master’s degree. Next, Section 7.3

presents the main limitation of the Beethoven platform, including the DSL orchestration, the

concrete architecture, and the performed evaluations. Finally, Section 7.4 presents and outlines

further work to improve the capabilities of Beethoven, Beethoven Spring Cloud, and Partitur. In

addition, this section presents further research directions expanding the Beethoven platform to

the domain of self-adaptive software systems engineering.

7.1 SUMMARY

This dissertation presents an event-driven platform, named Beethoven, for microser-

vice orchestration that facilitates the creation of complex applications using microservice data

flows. The Beethoven platform is composed of: (i) a reference architecture that is described

systematically using the ProSA-RA methodology; and (ii) an orchestration DSL, named Partitur,

based on declarative business processes. In order to instantiate the reference architecture, a

concrete architecture, named Spring Cloud Beethoven, has been implemented based on the actor

model and the Spring Cloud Netflix ecosystem.

Spring Cloud Beethoven provides integration for Spring Boot applications using

auto-configuration and binding to Spring Cloud Netflix components. Therefore, in order to

address dynamic microservice location, Spring Cloud Beethoven relies on Spring Cloud Eureka

for service discovery and Spring Cloud Ribbon for the client-side load balancer. As consequence,

there is no need to describe and register previously each microservice for performing orchestra-

tion. Thus, new microservices that are added to a microservices-based application can be used

during the microservice composition.

In order to evaluate the proposed platform, two example applications have been

developed and one controlled experiment has been conducted. The first example application is a

microservices-based application that implements a CRM system for an investment bank. Besides,

it is important to emphasize that the first example application has been developed by the author

of this dissertation in order to demonstrate the feasibility of the Beethoven platform. To reduce
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the research bias during the evaluation of the proposed platform, a second example application

has been developed by using a reference microservices-based application that has been adapted

in order to use the Beethoven platform for performing microservice orchestration. As result,

two versions of the reference application have been maintained: the original and orchestrated

versions.

Finally, in order to analyze the performance differences between the original and

orchestrated versions of the reference application, a controlled quasi-experiment has been

conducted. After conducting the experiment, considering a confidence level of 99% and α = 0.01,

it can be concluded that the difference in terms of the performance between the two versions

of the reference application is statistically significant. The alternative hypothesis H11 of the

experiment (the Beethoven platform causes performance overhead during the orchestration

of the checkout business process) has been rejected since the Beethoven platform provides a

performance improvement for all the execution scenarios executed during the experiment.

In order to accomplish the specific objectives presented in Section 1.2.2, the follow-

ing steps have been completed:

(i) In order to design and specify systematically an extensible and scalable event-driven

lightweight reference architecture for microservice orchestration, a reference architecture

has been specified using a methodology for defining software reference architectures

named ProSA-RA;

(ii) In order to design and implement an orchestration DSL based on declarative business

processes, an orchestration DSL, named Partitur (available on GitHub1) has been created;

(iii) In order to recognize the viability of the Beethoven platform, a concrete architecture,

named Spring Cloud Beethoven (available on GitHub2), has been implemented based on

the specification of the Beethoven’s reference architecture;

(iv) In order to verify the feasibility of the Beethoven platform and its concrete architecture, an

example application has been developed (available on GitHub3), demonstrating how the

proposed platform can be used;

(v) In order to confirm the feasibility of the Beethoven platform and its concrete architecture, a

second example application has been developed based on an existing reference application

that has been adapted to use the Beethoven platform (available on GitHub4);
1 <https://github.com/davimonteiro/partitur>
2 <https://github.com/davimonteiro/beethoven>
3 <https://github.com/davimonteiro/crm-msa-example>
4 <https://github.com/davimonteiro/reference-msa-application>

https://github.com/davimonteiro/partitur
https://github.com/davimonteiro/beethoven
https://github.com/davimonteiro/crm-msa-example
https://github.com/davimonteiro/reference-msa-application
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(vi) In order to evaluate a possible overhead that the Beethoven platform and its concrete

architecture may produce during microservice orchestration, a controlled quasi-experiment

has been conducted. All the dataset and result from this experiment are available to the

scientific community on GitHub5.

7.2 PUBLICATIONS

In this Section, the list of published papers as a result of the master’s degree and

contribution to the research goals of this dissertation is presented as follow.

1. Davi Monteiro, Rômulo Gadelha, Paulo Henrique M. Maia, Lincoln S. Rocha, and Nabor

C. Mendonça. Beethoven: An Event-Driven Lightweight Platform for Microservice

Orchestration. In Proceedings of the ACM 12th European Conference on Software

Architecture. ECSA 2018. (Qualis B1) (MONTEIRO et al., 2018)

2. Davi Monteiro, Rômulo Gadelha, Thayse Alencar, Bruno Neves, Italo Yeltsin, Thiago

Gomes, and Mariela Cortés. An Analysis of the Empirical Software Engineering over the

last 10 Editions of Brazilian Software Engineering Symposium. In Proceedings of the 31st

Brazilian Symposium on Software Engineering. SBES 2017. (Qualis B2) (MONTEIRO et

al., 2017)

3. Davi Monteiro, Rômulo Gadelha, Paulo Henrique M. Maia, and Evilásio Costa. Lo-

tus@runtime: A Tool for Runtime Monitoring and Verification of Self-Adaptive Systems.

In Proceedings of the 12th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems. SEAMS 2017. (Qualis A2) (MONTEIRO et al., 2017)

4. Davi Monteiro, Rômulo Gadelha, Paulo Henrique M. Maia, and Evilásio Costa. Lo-

tus@Runtime: Uma Ferramenta para Monitoramento e Verificação em Tempo de Exe-

cução para Sistemas Autoadaptativos. In: Simpósio Brasileiro de Computação Ubíqua e

Pervasiva. SBCUP 2016. (Qualis B4) (MONTEIRO et al., 2016)

7.3 LIMITATION

As limitations, the Beethoven platform is based on a reactive behavior to events and

commands that are exchanged among its event processors. In this manner, failures and timeouts

that may occur during the execution of workflow instances must be handled by a microservice

engineer using the orchestration DSL. For example, if a task execution fails, the engineer must
5 <https://github.com/davimonteiro/performance-evaluation>

https://github.com/davimonteiro/performance-evaluation
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specify an event handler for that failure and define which command should be performed after

the failure has occurred.

Another limitation of this dissertations is the orchestration DSL that has not been

validated. For instance, there are research questions regarding the proposed DSL is enough for

modeling different requirements in workflow fulfilling or whether the Partitur elements are suit-

able for dealing with different kind of workflows. Therefore, in order to ensure the completeness

of the proposed reference architecture for workflow modeling, a validation regarding existing

workflow patterns in literature has to be done.

In addition, there are some desired features for DSLs based on declarative business

processes that need to be evaluated in Partitur such as the expressibility of a process modeling

language and the level of comprehensibility. The former refers to the ability to express specific

process elements (e.g., control-flow, data, execution and temporal information) (LU; SADIQ,

2007), while the latter refers to the ability of a process modelling language to define under-

standable process models that can be easily understandable among various stakeholders (e.g.,

application developers, business analysts, and business owners) (FAHLAND et al., 2009).

7.4 FUTURE WORK

As future work, self-adaptive software systems engineering for microservice or-

chestration will be used to improve the reliability, flexibility, and resilience of the Beethoven

platform. Specifically, further research directions intend to evolve from a reactive to a proactive

platform by supporting proactive adaptation strategies during microservice orchestration. This

allows dynamic microservices orchestration by replacing microservice operations at runtime

and offering support to adaptation based on goals or policies. In order to address limitations

of Partitur, empirical validations (e.g., surveys, case studies, and experiments) has to be done,

collecting information to guide further research. In addition, the performance evaluation that

has been conducted during the quasi-experiment has to be extended by using different execution

scenarios such as reactive and proactive situations. At last, but not least, since the platform is

an open source software, it is expected to receive feedback from both academic and industrial

communities that can be used to improve the platform.
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APPENDIX A – Partitur DSL specification

Code 24 – Partitur DSL specification� �
1 grammar io.beethoven.partitur.Partitur with org.eclipse.xtext.common.Terminals
2

3 generate partitur "http://www.beethoven.io/partitur/Partitur"
4

5

6 PartiturWorkflow:
7 'workflow' name=ID '{'
8 (tasks+=PartiturTask)*
9 (handlers+=PartiturHandler)*

10 '}'
11 ;
12

13 PartiturTask:
14 'task' name=ID '{'
15 (
16 partiturHttpRequest = HttpGet |
17 partiturHttpRequest = HttpPost |
18 partiturHttpRequest = HttpPut |
19 partiturHttpRequest = HttpDelete
20 )
21 '}'
22 ;
23

24 PartiturHandler:
25 'handler' name=ID '{'
26 'on' (event = EventType)
27 'when' conditions+=PartiturCondition (',' conditions+=PartiturCondition)*
28 'then' commands+=PartiturCommand (',' commands+=PartiturCommand)*
29 '}'
30 ;
31

32 PartiturCondition:
33 (conditionFunction=PartiturConditionFunction)'('arg=STRING')'
34 ;
35

36 enum PartiturConditionFunction:
37 taskNameEqualsTo = 'taskNameEqualsTo' |
38 taskResponseEqualsTo = 'taskResponseEqualsTo' |
39 workflowNameEqualsTo = 'workflowNameEqualsTo'
40 ;
41

42 PartiturCommand:
43 (commandFunction=PartiturCommandFunction)'('arg=STRING')'
44 ;
45

46 enum PartiturCommandFunction:
47 startTask = 'startTask' |
48 startWorkflow = 'startWorkflow' |
49 stopWorkflow = 'stopWorkflow' |
50 cancelWorkflow = 'cancelWorkflow'
51 ;
52

53 enum EventType:
54 // Task events
55 TASK_STARTED |
56 TASK_COMPLETED |
57 TASK_TIMEDOUT |
58 TASK_FAILED |
59
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60 // Workflow events
61 WORKFLOW_SCHEDULED |
62 WORKFLOW_STARTED |
63 WORKFLOW_COMPLETED
64 ;
65

66 HttpGet:
67 'get' '(' url = STRING ')'
68 (uriVariables = UriVariables)?
69 (headers += HttpHeader)*
70 (params += QueryParam)*
71 ;
72

73 HttpPost:
74 'post' '(' url = STRING ')'
75 (uriVariables = UriVariables)?
76 (headers += HttpHeader)*
77 (body = HttpBody)?
78 ;
79

80 HttpPut:
81 'put' '(' url = STRING ')'
82 (uriVariables = UriVariables)?
83 (headers += HttpHeader)*
84 (body = HttpBody)?
85 ;
86

87 HttpDelete:
88 'delete' '(' url = STRING ')'
89 (uriVariables = UriVariables)?
90 (headers += HttpHeader)*
91 ;
92

93 HttpHeader:
94 '.header(' name = STRING ',' value = STRING ')'
95 ;
96

97 UriVariables:
98 '.uriVariables(' values += STRING (',' values += STRING)* ')'
99 ;
100

101 QueryParam:
102 '.queryParams(' name = STRING ',' value = STRING ')'
103 ;
104

105 HttpBody:
106 '.body(' value = STRING ')'
107 ;� �
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APPENDIX B – Beethoven’s endpoints

Send command operations

• HTTP request: POST api/workflows/{workflowName}/operations

• Description: Responsible for sending command operations (e.g. start, stop, or cancel) to

a particular workflow.

• Path variable (required): {workflowName} represents the workflow identifier.

• Request body (required): A command operation in JSON.

Create a new workflow

• HTTP request: POST api/workflows

• Description: Responsible for creating a new workflow.

• Request body (required): A workflow definition in JSON.

Create a new task

• HTTP request: POST api/workflows/{workflowName}/tasks

• Description: Responsible for creating a new task for a particular workflow definition.

• Path variable (required): {workflowName} represents the workflow identifier.

• Request body (required): A t definition in JSON.

Create a new event handler

• HTTP request: POST api/workflows/{workflowName}/handlers

• Description: Responsible for creating a new event handler for a particular workflow

definition.

• Path variable (required): {workflowName} represents the workflow identifier.

• Request body (required): An event handler definition in JSON.

Find all workflows

• HTTP request: GET api/workflows/workflowName

• Description: Responsible for retrieving a list of workflow definitions.
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Find a particular workflow

• HTTP request: GET api/workflows

• Description: Responsible for retrieving a particular workflow definition.

Find all tasks

• HTTP request: GET api/workflows/{workflowName}/tasks

• Description: Responsible for retrieving a list of tasks from a particular workflow.

• Path variable (required): {workflowName} represents the workflow identifier in which

the task is contained.

Find a particular task

• HTTP request: GET api/workflows/{workflowName}/tasks/{taskName}

• Description: Responsible for retrieving a particular task form a given task identifier.

• Path variable (required): {workflowName} represents the workflow identifier in which

the task is contained.

• Path variable (required): {taskName} represents the task identifier in which should be

retrieved.

Find all event handlers

• HTTP request: GET api/workflows/{workflowName}/handlers

• Description: Responsible for retrieving a list of tasks from a particular workflow.

• Path variable (required): {workflowName} represents the workflow identifier in which

the task is contained.

Find a particular event handler

• HTTP request: GET api/workflows/{workflowName}/handlers/{handlerName}

• Description: Responsible for retrieving a particular event handler form a given handler

identifier.

• Path variable (required): {workflowName} represents the workflow identifier in which

the event handler is contained.

• Path variable (required): {handlerName} represents the handler identifier in which
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should be retrieved.

Update a particular workflow

• HTTP request: PUT api/workflows/{workflowName}

• Description: Responsible for updating a particular workflow definition.

• Path variable (required): {workflowName} represents the workflow identifier that must

be updated.

• Request body (required): A workflow definition in JSON.

Update a particular task

• HTTP request: PUT api/workflows/{workflowName}/tasks/{taskName}

• Description: Responsible for updating a particular task definition.

• Path variable (required): {workflowName} represents the workflow identifier in which

the task is contained.

• Path variable (required): {taskName} represents the task identifier that must be updated.

• Request body (required): A task definition in JSON.

Update a particular event handler

• HTTP request: PUT api/workflows/{workflowName}/handlers/{handlerName}

• Description: Responsible for updating a particular handler definition.

• Path variable (required): {workflowName} represents the workflow identifier in which

the event handler is contained.

• Path variable (required): {handlerName} represents the event handler identifier that

must be updated.

• Request body (required): A event handler definition in JSON.

Delete a particular workflow

• HTTP request: DELETE api/workflows/{workflowName}

• Description: Responsible for deleting a particular workflow definition.

• Path variable (required): {workflowName} represents the workflow identifier that must

be excluded.
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Delete a particular task

• HTTP request: DELETE api/workflows/{workflowName}/tasks/{taskName}

• Description: Responsible for deleting a particular task definition.

• Path variable (required): {workflowName} represents the workflow identifier in which

the task is contained.

• Path variable (required): {taskName} represents the task identifier that must be excluded.

Delete a particular event handler

• HTTP request: DELETE api/workflows/{workflowName}/handlers/{handlerName}

• Description: Responsible for deleting a particular event handler definition.

• Path variable (required): {workflowName} represents the workflow identifier in which

the event handler is contained.

• Path variable (required): {handlerName} represents the event handler identifier that

must be excluded.
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