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Abstract In this work, we study a traversable wormhole
sourced by an ideal matter fluid with an antisymmetric 2-
tensor background field coupled to gravity in a scenario
of spontaneously broken Lorentz symmetry. Contrary to
employed in the literature, we use a nonminimal curvature-
coupling term BμνBκλRμνκλ which incorporates all three
kinds of Lorentz-violating coefficient for the pure-gravity
sector of the minimal standard-model extension. We find that
the wormhole is non-asymptotically globally flat and deter-
mine the allowed parameters of the theory, showing that the
matter fluid must be necessarily anisotropic. We also ana-
lyze the energy conditions, checking their validity range and
comparing them with those predicted by general relativity.

1 Introduction

The possibility of Lorentz symmetry breaking at the Planck
scale is supported by some fundamental theories, including
strings [1,2], loop quantum gravity [3,4], noncommutative
spacetimes [5], and Horava–Lifshitz gravity [6]. A theoreti-
cal framework that can describe the low energy effects result-
ing from such symmetry breaking is the Standard-Model
Extension (SME) proposed by Colladay and Kostelecký in
the late 1990s [7,8]. The SME incorporates CPT- and Lorentz
symmetry violation terms in all the usual standard model sec-
tors. It was later expanded to take gravity into account as an
effective theory, capable of making predictions that can be
tested or verified observationally within current technologi-
cal limits [9]. Since its construction, the SME has been sub-
ject to several theoretical studies and experimental tests that
made it possible to raise tight constraints on Lorentz invari-
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ance in nature. An updated compilation of all upper bounds
can be found in [10].

In this context, it is of deep interest to explore the conse-
quences of Lorentz violation in the gravitational scenario
involving compact objects like black holes [11–14] and
topologically non-trivial structures as wormholes [16,17]
as well as in cosmology [18–20]. These objects originally
were found as solutions for the field equations of general
relativity, unraveling unexpected connections between two
remote regions of the spacetime [21–23]. Wormholes can
also occur in spacetimes with arbitrary dimensions and in
several topologies (see [24], and references therein). They
usually do not satisfy the energy conditions of the general
relativity, being necessary some exotic matter as a source,
like the Casimir energy [25–28]. Nevertheless, classical and
quantum-modified theories of gravity can change this fea-
ture, which has been widely discussed in the recent literature
[29–33]. Still concerning such objects, a class of modified
theories as those embodying background fields coupled to
the gravity, with spontaneously Lorentz symmetry breaking,
were analyzed in Refs. [16,17].

Thus, in this letter, we will study a traversable worm-
hole immersed in an antisymmetric 2-tensor background field
coupled to gravity and sourced by a matter fluid in a scenario
of spontaneously Lorentz symmetry breaking [34]. Differ-
ently from that was employed recently in [17], we will use
another coupling to the antisymmetric field with the curva-
ture, which plays the role of a pseudo-electric one. We will
show that the matter fluid can be ideal; however, it must be
anisotropic. We will also determine the allowed parameters
of the theory, analyze the energy conditions and verify where
they are satisfied or violated, compared with that predicted
by general relativity.
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2 The Einstein-bumblebee gravity with an
antisymmetric tensor

Here we present and discuss the main aspects of the
model adopted in this work. The chosen action involves the
Einstein–Hilbert term of general relativity with the presence
of an antisymmetric 2-tensor Bμν = −Bνμ, and it is given
by [34]

S =
∫

d4x
√−g

[
1

2κ
R − 1

12
HμνλH

μνλ − V

+ ξ1

2κ
BκλBμνRκλμν + LM

]
, (1)

where κ = 8πGN such that GN is the Newtonian gravi-
tational constant, and the coupling constant ξ1 (with mass
dimension [ξ1] = M−2 in natural units) represents a non-
derivative gravitational coupling to Bμν that is linear in the
curvature. The field-strength tensor Hμνλ associated with
Bμν is defined by

Hμνλ = ∂μBνλ + ∂λBμν + ∂νBμλ, (2)

with Hμνλ being invariant under the gauge transformation
Bμν → Bμν +∂μ�ν −∂ν�μ. Also, the potential V is respon-
sible for triggering spontaneous Lorentz violation inducing
a nonzero vacuum value

〈
Bμν

〉 = bμν , and LM handles the
ordinary matter content that will be specified later.

Our motivation in choosing the theory defined by the
action (1) is twofold. First, the coupling involving the con-
stant ξ1 can generate all three Lorentz-violating coefficient
fields of the SME, usually denoted as u, sμν , and tκλμν [35].
In particular, the t-coefficient can only be expressed in terms
of the field Bμν when contracted with the Riemann curvature
tensor from the ξ1 coupling [34]. Second, the phenomeno-
logical role of the t-coefficient is an intriguing issue still
little explored in the literature since previous investigations
involving solutions of black holes [12] and wormholes [17]
did not take into account this type of coupling present in (1).
Hence, our main focus of this letter is to determine the exis-
tence of a wormhole solution modified by the ξ1 coupling,
responsible for producing a nonzero vacuum value for tκλμν .

The equations of motion for gravity can be obtained from
(1) by varying with respect to gμν and keeping the other fields
fixed. Thus, we get

Gμν = κ(TM )μν + κ(TB)μν + (Tξ1)
μν. (3)

On the left side in (3), we have the usual Einstein tensor
Gμν = Rμν − 1

2 Rgμν , while on the right side are repre-
sented the energy–momentum tensors due to the matter con-
tent (TM )μν and the contributions originating due to Bμν field
that appear from the kinetic and potential terms (TB)μν and
the nonminimal coupling (Tξ1)μν , respectively.

For B-terms, we find explicitly

(TB)μν = 1

2
HαβμH ν

αβ

− 1

12
gμνHαβγ Hαβγ

− gμνV + 4BαμB ν
α V ′, (4)

where for simplicity we have assumed the dependence of the
potential V with respect to Bμν through the form

V ≡ V (BμνB
μν − x), (5)

with x being a real number representing the vacuum value of
the invariant

x ≡ 〈
BμνB

μν
〉

= 〈
gαμ

〉 × 〈
gβν

〉
bαβbμν, (6)

and the prime ′ means derivative with respect to the potential
argument. Note that 〈gμν〉 is the vacuum value to the inverse
metric. For our present purpose, we can assume the Bμν field
and the metric are frozen in their vacuum values so that

Bμν = bμν, gμν = 〈
gμν

〉
, (7)

and the vacuum conditions V = V ′ = 0 are guaranteed.
Finally, the contributions due to nonminimal gravitational

coupling is

(Tξ1)
μν = ξ1

(
1

2
gμνBαβBγ δ

× Rαβγ δ + 3

2
Bβγ

× BαμRν
αβγ

+ 3

2
Bβγ BανRμ

αβγ

+ ∇α∇βB
αμBνβ

+ ∇α∇βB
ανBμβ

)
. (8)

The equations of motion for the antisymmetric tensor field
are also obtained from the action (1). By varying this action
concerning Bμν , and this time keeping the metric and matter
fields fixed, we have

∇αH
αμν = 4V ′Bμν

−2ξ1

κ
Bαβ R

αβμν. (9)

Note that here we are explicitly disregarding any type of cou-
pling between the matter fields and Bμν . Such a possibility
may imply changes in the conservation of the conventional
matter currents ant it is beyond our present scope.
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3 Static spherical wormhole solution with spontaneous
Lorentz breaking

The Morris–Thorne geometry which represents a static and
spherically symmetric wormhole solution is described by the
line element [25,36]

ds2 = −e2
(r)dt2 +
(

1 − �(r)

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2,

(10)

where 
(r) is called the redshift function, admittedly every-
where finite to avoid event horizons or singularities, and �(r)
is the shape function of the wormhole. Additional conditions
on 
(r) and �(r) are required for a transversable worm-
hole solution. One of them is the existence of the minimum
radius: �(r0) = r0, where r = r0 is the radius of the throat
of the wormhole. Another important requirement is the flare-
out condition at the throat: �(r) < r , while �′(r0) < 1.
Also, the tidal gravitational forces must be very small, i.e.,
|
| 	 1. For the remainder of this work, we will neglect the
tidal force, assuming 
(r) = 0. With this simple choice, we
can determine an exact wormhole solution, as we will see
below.

For the matter-energy content, we adopt a perfect fluid
such that the energy–momentum tensor for the matter has
the (TM )

μ
ν = diag(−ρ, pr , pθ , pφ). It is worth emphasizing

that the perfect fluid is not assumed to be isotropic since the
radial and lateral pressures are not a priori equal.

Now let us configure the Lorentz-violating field. Follow-
ing the Refs. [12,17], we will restrict ourselves to the pseudo-
electric configuration in which the field Bμν is frozen in its
vacuum expectation value bμν , whose explicit form is given
by

bμν = b10 = −b01 = a√
1 − �(r)

r

. (11)

In this way, the background field bμν has a constant norm,
bμνbμν = −2a2, where a is a real and positive parameter.
This setup preserves the spherical and static spacetime sym-
metry. Moreover, according to relations (2) and (11), the field
strength Hμνλ is identically null, and it can be explicitly ver-
ified that the equations of motion for Bμν expressed in (9)
are automatically satisfied.

Indeed, assuming the vacuum conditions, i.e., V ′ = 0 =
V and the vev (11) for Bμν , the relevant components obtained
from Eq. (9) are − 4ξ1

κ
b01R01μν . On the other hand, for the

metric (10) with the zero tidal condition (
 = 0), it can be
shown that the nonzero components of the Riemann curvature
tensor are

R1212 = −
(

� − r�′

2r − 2�

)
,

R1313 = sin2 θR1212, R2323 = r sin2 θ�, (12)

and also those obtained by the allowed permutations of
indices. Thus, it is clear that the b01R01μν term is identically
null for the configuration adopted by us.

After these preliminary considerations, the extended Ein-
stein equations (3) result in the following nonvanishing com-
ponents:

�′

r2 − λ

r3

(
r�′ + � − 2r

) − κρ = 0, (13)

�

r3 + κpr = 0, (14)

1

2

(
�′ − �

r

)
+ κr2 pθ = 0, (15)

sin2 θ

[
1

2

(
�′ − �

r

)
+ κr2 pφ

]
= 0, (16)

where we have defined the Lorentz-violating parameter λ =
2ξ1a2. Note that the signature of the Lorentz violation only
appears in the temporal part (13) of the field equations.

From Eq. (14), one can express the radial pressure in terms
of the shape function as

pr = − �

κr3 . (17)

Assuming the equation of state: pr = ωρ, where ω is a
dimensionless real parameter, we insert the relation (17) into
Eq. (13) to get

(1 − λ)r�′ +
(

1

ω
− λ

)
� + 2λr = 0. (18)

Solving the above equation, we obtain the solution for the
shape function as follows

�(r) = 1

1 + (1 − 2λ)ω

×
[
−2λωr + (1 + ω)r0

(r0

r

) 1−λω
(1−λ)ω

]
, (19)

and as before-mentioned �(r0) = r0.
Inserting Eq. (19) into Eq. (17), we get the energy density

ρ(r) = 1

ωκ (1 + ω − 2λω) r3[
2λωr − (1 + ω)r0

(r0

r

) 1−λω
(1−λ)ω

]
. (20)

It is easy to verify that the solutions (19) and (20), together
with the equation of state to ρ and pr , satisfy the temporal
(13) and radial (14) components of the Einstein equations.
However, these solutions do not verify the other components
(15, 16) to the isotropic condition, i.e., pr = pθ = pφ ,
except for the usual case when λ = 0. Thus, it is impossible
to determine a specific value for ω that preserves the isotropy
of the perfect fluid and still allows the Lorentz breaking.
For wormhole solutions in the context of bumblebee gravity
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models, this anisotropic condition is a new result and differs
from those already obtained in the literature [16,17].

Nevertheless, we can still assume pθ = pφ and use Eqs.
(15) and (19) to fix the lateral pressure, thus

pθ (r) = pφ(r)

= (1 + ω)r0

2ωκ(1 − λ)r2

×
(r0

r

) 1−λω
(1−λ)ω

. (21)

As expected, at the Lorentz invariant regime, i.e., λ → 0, we
recover the isotropic case for ω = −1/3, such that �(r) =
r3/r2

0 and pr = pθ = pφ = −1/κr2
0 , which represents a

spacetime of constant curvature [37].
One can easily see that the radial metric component

grr = (
1 − �

r

)−1
diverge at r = r0, as is expected for

any wormholes. However, our wormhole solution is non-
asymptotically flat when r → ∞:

lim
r→∞

�(r)

r
⇒ − 2λω

1 + ω − 2λω

+ 1 + ω

1 + ω − 2λω
lim
r→∞

(r0

r

)1+ 1−λω
(1−λ)ω

. (22)

From the above result, it is clear that the first term does not
depend on r , while the second term is vanished if

1 + 1 − λω

(1 − λ)ω
> 0, (23)

otherwise the metric diverges at infinity. Generally speaking,
the geometry of wormholes is asymptotically flat, at least in
the general relativity context. Here we are dealing with a sce-
nario of extended gravity, which comprises a classical back-
ground field which spontaneously violates the local Lorentz
symmetry, and this explains the non-flatness at infinity. A
similar result involving a wormhole solution in the presence
of a vector background field was obtained in Ref. [16]. Such
solutions have analogous asymptotic behavior to the space-
times having topological defects. In fact, by a simple trans-
formation of coordinates we can rewrite the wormhole metric
at the asymptotic limit in the form,

ds2 = −dt2 + dr̃2

+
(

1 + 2λω

1 + ω − 2λω

)

×r̃2(dθ2 + sin2 θdφ2), (24)

where we take

r̃ =
(

1 + 2λω

1 + ω − 2λω

)−1/2

r. (25)

The above result show that the asymptotic geometry corre-
sponds to a global monopole [15], provided the condition
(23) is satisfied. Aligning this condition with the flare-out
one, �(r) < r for all r > r0, gives us the parameter space

Fig. 1 Parameter space (ω, λ) associated to the modified wormhole
solution due to Lorentz breaking. The colored regions indicate the
allowed values of these parameters for the formation of the wormhole.
Hot (cold) colors indicate great (small) values for the Lorentz break-
down parameter, λ

configuration shown in Fig. 1, in which the allowed values
for λ and ω are exhibited, in thermal colors. Notice also that
phantom-like fluids (ω < −1), for little values of λ can gen-
erate the wormhole under inspection.

From solution (19), we can calculate the Ricci and the
Kretschmann scalars. Their values at r = r0, are respectively,

R|r=r0 = −2(1 + λω)

(1 − λ)ω

1

r2
0

, (26)

and

K |r=r0 = 2 + 4ω + (6 − 8λ + 4λ2)ω2

(1 − λ)2ω2r4
0

. (27)

These quantities show that the wormholes are free of singu-
larities at the throat, guaranteeing thus their traversability, for
all λ �= 1.

Lastly, we now analyze the energy conditions for the
perfect anisotropic fluid supporting our modified wormhole
solution. We depict in Fig. 2 some quantities taken from the
energy density and pressures as functions of the radial coor-
dinate, in order to verify the regions where the Null Energy
Conditions (NEC, ρ + pi ≥ 0), Weak Energy Conditions
(WEC, ρ ≥ 0, ρ + pi ≥ 0), Strong Energy Conditions
(SEC, ρ + pi ≥ 0, ρ + ∑

pi ≥ 0), and Dominant Energy
Conditions (DEC, ρ ≥ 0, −ρ ≥ pi ≥ ρ) are satisfied. We
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Fig. 2 Energy density, pressures, and their combinations associated to the matter fluid, as functions of the radial coordinate, for λ = 0.1, ω = 1/3,
and r0 = 20, in natural units

can notice that NEC, WEC, and SEC are entirely obeyed for

r ≥ rc =
(

2ωλ

ω + 1

) ω(1−λ)
2ωλ−w−1

r0, (28)

which is confirmed in the left panel of Fig. 2.
On the other hand, those conditions as well as DEC are

fully satisfied for r ≥ rd , which cannot be analytically deter-
mined. Notice however that rd > rc, and this can be clearly
seen in the right panel of Fig. 2. Thus, we conclude that only
in the neighborhood of the wormhole throat all the energy
conditions are violated. We also notice that on returning to
general relativity by making λ = 0, they leave be satisfied at
all r > r0. The present analysis shows us that even an ordi-
nary fluid, like electromagnetic radiation (ω = 1/3), can con-
tribute to the formation of the wormhole due to the presence
of a background field that violates the Lorentz symmetry,
behaving effectively like exotic matter nearby the wormhole
throat.

4 Conclusion

In this work, we have studied traversable wormhole solutions
with an antisymmetric 2-tensor background field coupled to
gravity, with spontaneous Lorentz symmetry breaking. We
have used a gravity coupling to that field still not employed
in the literature, which by its turn plays the role of a pseudo-
electric field, finding a traversable wormhole solution non-
asymptotically globally flat. To ensure that all components
of the modified Einstein equations are satisfied, we relax the
isotropy assumption for the matter content and assume that
the equation of state p = ωρ is valid only for radial pres-
sure. The solution obtained is then used to fix the lateral pres-
sures. Also, we have established a parameter space where this
must occur, together with the flare-out condition, for a per-

fect fluid sustaining the wormhole. Also, we have identified
that even a phantom-like fluid can be a source for this modi-
fied wormhole solution. Furthermore, the matter fluid needs
to be anisotropic, compatible with the nonvanishing vev of
the background field itself. Such a feature was not found in
the case examined in Ref. [17]. Furthermore, we have found
that all the energy conditions are satisfied beyond a criti-
cal radius. That is different from what happens in general
relativity, in which those conditions leave to be valid every-
where. We have shown that such a violation occurs only near
the wormhole throat and verifies that an ordinary fluid, as
electromagnetic radiation, can be a source to this structure,
behaving, thus, as an exotic fluid, due to the presence of the
antisymmetric background field. As a future perspective, we
intend to study the influence of the pseudo-magnetic sector of
the antisymmetric background field, together with the matter
fluid in building a traversable wormhole.
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