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ABSTRACT

In this letter, we investigate the changes in the quantum vacuum energy density of a massless

scalar field inside a Casimir cavity that orbits a wormhole, by considering the cosmological model

with an isotropic form of the Morris-Thorne wormhole, embedded in the FLRW universe. In this

sense, we examine the effects of its global curvature and scale factor in an instant of the cosmic

history, besides the influences of the local geometry as well as of inertial forces, on the Casimir

energy density. We also study the behavior of this quantity when each plate is fixed without rotation

at the opposite sides of the wormhole throat, at zero and finite temperatures, taking into account

the effective distance between the plates through the wormhole throat.
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Wormholes are solutions to the Einstein’s equations of General Relativity and represent physi-

cal connections between two distant regions of the universe [1]. Although the first solutions had

obstacles with respect to the traversing through them [2, 3, 4, 5, 6], Michael Morris and Kip Thorne

investigate a viable traversable wormhole, under certain specific conditions [7].

In general, it is necessary some form of exotic matter, i.e., the one that obeys non-trivial equa-

tions of state, around a wormhole, with some exceptions [8, 9, 10, 11]. Thus, the Casimir effect,

that in its original presentation involves negative energies of quantum fields present between paral-

lel and uncharged plates, has been increasingly examined near such objects. A pioneering analysis

by Sorge [12] investigated the interference of both non-inertial effects and spacetime geometry on

the vacuum energy density of a non-massive scalar field present in a small Casimir cavity, which

orbits an Ellis-Thorne wormhole [13]. In this perspective, recent works considering the Casimir

effect around other kinds of wormhole have been published [14, 15], as well as others analyzing

the modelling of wormhole shapes via Casimir energy [16, 17]. Thus, the study of this effect in

various scenarios where gravity plays a relevant role contributes to one understanding how it oc-

curs the fundamental interplay between the vacuum of quantum fields and gravitation, taking more

a step towards a final theory.

Another deep connection between wormholes and quantum mechanics, further expanding the

interest around these objects, was described in [18] in the so-called conjecture ER = EPR. This lat-

ter postulates that there is a kind of equivalence between a wormhole like the Einstein-Rose bridge

[2] and quantum entanglement, firstly suggested by Einstein-Podolsky-Rose [19]. Basically, if

there is such a bridge, the two extremities are entangled by EPR pairs, and vice-versa. On the

other hand, a counterexample of this relationship was given in [20], by taking into account pairs of

black holes, spatially separated and quantum entangled, in an anti-de Sitter space, preventing the

generality of that connection.

Recently, Kim [21] studied a cosmological model consistent with an isotropic form of the

Morris-Thorne wormhole associated with the Friedmann-Lemaître-Robertson-Walker (FLRW)

universe given in [22], finding the exact solution that satisfies Einstein’s field equation. That author

discussed if the wormhole must interact, in some way, with the exotic matter present in spacetime
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and with this latter itself [21].

In this work, we will investigate the changes in the quantum vacuum energy density of a mass-

less scalar field inside a Casimir apparatus that orbits a wormhole, according to the techniques

used in [12, 14], but now by considering the cosmological model with an isotropic form of the

Morris-Thorne wormhole, embedded in the universe (FLRW), found in [21]. Thus, we generalize

the work of Sorge [12], by examining the effects of the Universe global curvature and its scale fac-

tor, besides the influences of the local geometry as well as of inertial forces, on the Casimir energy

density. We also will study the behavior of such a quantity when each plate is fixed statically at the

opposite sides of the wormhole throat, at zero and finite temperatures.

Initially, we take the FLRW metric of a cosmological Morris-Thorne wormhole, in isotropic

coordinates, described by [21] (G = c = kB = 1)

ds2 = −dt2 +
a2(t)

(kr2 + 1)2

(

1 +
b20
4r2

)2

[dr2 + r2(dθ2 + sin2 θdφ2)], (1)

where a(t) is the scale factor, k the curvature of the Universe and b0/2 the radius of the wormhole

throat. Hence, we define the function C(r) from the equation (1) as

C(r) ≡ a(t0)

(kr2 + 1)

(

1 +
b20
4r2

)

, (2)

where we take the scale factor in a specific instant (t0) of the Universe, supposing thus that it is

static in a first approximation.

Consider the Casimir apparatus orbiting, in a circular path, around the wormhole described by

Eq. (1) at the equatorial plane (θ = π/2). Based on what was presented in [12, 14], we will adopt

the necessary conditions to determine the Casimir energy density in a cosmological scenario. First,

we introduce a unitary tangent timelike vector u = eψ(∂t + Ω∂φ), with angular velocity of the

plates Ω = dφ/dt and, consequently,

eψ =
1

√

1− r2Ω2C2(r)
, (3)
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for which, taking into account the positive direction of the rotation, we have

0 ≤ Ω <
(kr2 + 1)

a(t)r

(

1 +
b20
4r2

)−2

≡ Ω(r). (4)

We will consider now the quantum vacuum fluctuations of a massless scalar field ϕ(xµ) con-

fined within the orbiting cavity. Thus, we must initially solve the Klein–Gordon equation, as-

suming Dirichlet boundary conditions on the plates, whose proper separation, in the comoving

observer’s frame, is L. The proper area of each plate is S and we will work with the approximation

L ≪
√
S ≪ b0 ≤ r. In this approach we do not consider tidal effects inside the cavity, only the

ones of gravito-inertial nature. We must still mention that there are in the literature controversies

about the existence or not of these effects between the plates, at least in lower orders of approxi-

mation [23, 24].

Implementing a frame associated to the orbiting Casimir apparatus, so that the azimuth angle

transforms as dφ → dφ+ Ωdt, the comoving observer will obtain a metric given by

ds2 =
[

1− r2Ω2C2(r)
]

dt2 − C2(r)(dr2 + r2dθ2 − r2dφ2 − 2Ωr2dφdt). (5)

Introducing orthonormal tetrades in the form of

êτ = [1− r2Ω2C2(r)]−1/2 ∂

∂t
,

êx = C(r)−1 ∂

∂r
,

êy = [rC(r)]−1 ∂

∂θ
,

êz = rΩC(r)[1− r2Ω2C2(r)]−1/2 ∂

∂t
+ [rC(r)]−1[1− r2Ω2C2(r)]1/2

∂

∂φ
, (6)

where z is a coordinate normal to the plates and êτ the four-velocity. Considering the minimal

coupling, the motion equation for the non-massive scalar field is, therefore

1√−g
∂µ(

√
−ggµν∂νϕ) = ∇2ϕ− 2

r

∂ϕ

∂x
= 0, (7)

where ∇2 = ∂2
x+∂2

y+∂2
z . We have used the approximation in which r ≈ constant inside the plates,

provided L ≪ r.
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The solutions of Eq. (7) satisfying the Dirichlet boundary conditions are given by

ϕn,k‖
= Nn exp (−iωn,k‖

τ) exp (ik‖ · x‖) sin
(nπz

L

)

, (8)

where (ωn,‖,k‖) are the eigenfrequencies and momenta of the field free propagation modes parallel

to the plates. These solutions are in the flat spacetime form, since tidal effects due to spacetime

inhomogeneities inside the small cavity are negligible. These modes are normalized from the

Klein-Gordon scalar product, given in the tetrade frame by [12]

〈ϕn(k), ϕm(k′)〉 = i

∫

∑

[(∂aϕn)ϕ
∗
m − ϕn(∂aϕ

∗
m)]n

adxdydz, (9)

where na = eaµn
µ and nµ = (1, 0, 0,−Ω). Taking into account that

〈ϕn(k‖), ϕm(k
′
‖)〉 = δ2(k‖ − k′

‖)δmn, (10)

we arrive at the normalization parameter

Nn =

(

√

1− r2Ω2F 2(r)

4π2Lωn,‖

)1/2

, (11)

which guarantees the orthonormalization of the field modes and encodes the properties of the con-

sidered spacetime.

The Casimir energy will be obtained from the regularization of the expected value of the quan-

tum vacuum fluctuations energy, given by

〈ǫ〉 = 1

Vp

∫

Σ

d3x
√
gΣ
∑

n

∫

d2k‖T00, (12)

where the first integration is realized in the Casimir cavity, which has proper volume Vp = V
√−gΣ,

with V being the volume measured by a distant observer, gΣ = det (ĝµν)/ĝtt [26], and the second

integration is over the space of the momenta parallel to the plates. The purely temporal component

of the energy-momentum tensor, T00, associated to the n mode, is given by

T00 = ∂τϕn∂τϕ
∗
n −

1

2
η00η

ij∂iϕn∂jϕ
∗
n. (13)
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Plugging (13) into (12), we obtain

〈ǫ〉 =
√

1− r2Ω2C2(r)

8π2L

∑

n

∫ ∞

0

d2k‖

√

k2
‖ +

n2π2

L2
. (14)

From the Schwinger proper-time representation for the above integral, given by

a−z =
1

Γ(z)

∫ ∞

0

tz−1 exp (−at)dt, (15)

in which a = k2 + n2π2/L2 and z = −1/2, with k‖ = k and d2k‖ = 2πkdk. Thus, the integral

in the momentum variable can be performed by using the Euler representation for the gamma

function, and the summation in n is carried by means of the definition of the Riemann zeta function,

ζ(s) =
∑∞

1 n−s. With this, we finally arrive at the Casimir energy density between the plates,

given by

ǫC = −
[

1− r2Ω2 a2(t0)

(kr2 + 1)2

(

1 +
b20
4r2

)2
]1/2

|ǫ0|, (16)

where the factor ǫ0 is the Casimir energy density of the scalar field in the Minkowsky spacetime,

namely

ǫ0 = − π2

1440L4
. (17)

It is worth to notice that the quantity in Eq.(16) reduces to the one found in [12] for a(t0) = 1 and

k = 0.

Looking at the graph of Fig. 1, we can see that the Casimir energy density has its highest values

in the space with negative global curvature (hyperbolic), followed by an intermediary energy in the

space of zero curvature, and lower energy when the space is positively curved (spherical).

k=-1

k=0

k=1

R

r
0.2 0.4 0.6 0.8 1.0

-0.99998

-0.99996

-0.99994

-0.99992

-0.99990

Figure 1: The ratio R = ǫC/|ǫ0|, as a function of the radial coordinate, r > b0/2, for b0 = 0.001, Ω = 0.01, and

a(t0) = 1.
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It is interesting to examine the situation in which each plate stays at rest (i.e., Ω = 0) at fixed

radial coordinates ±r. The opposite signs indicate that each plate is positioned with respect to

the center of wormhole throat at respective coordinate r in opposite sides. Then, the effective

separation between the plates through the wormhole will be given by [25]

Leff =

∫ +r

−r

a(t0)

(kr′2 + 1)

(

1 +
b20
4r′2

)

dr′ = a(t0)





(4− b20k) tan
−1
(√

kr
)

2
√
k

− b20
2r



 . (18)

We notice that when the plates are nearby the throat radius, r ≈ b0/2, the effective distance between

them will only have a finite value in a hyperbolic Universe. For a throat very small compared to

the Universe curvature radius, RU , we will get

Leff ≈
a(t0)b

3
0

3R2
U

, (19)

and the Casimir energy density (17) becomes

ǫC ≈ − 9π2R8
U

160a4(t0)b120
, (20)

which can represent a huge quantity of energy.

In which follows, we will made the analysis of the thermal Casimir effect. According to [26],

the present problem reduces to that one of the flat spacetime, since the renormalized Helmholtz

free energy (RHFE) associated to the Casimir apparatus orbiting the wormhole in a thermal bath

has the same value than the one measured in the Minkowsky spacetime, relative to a comoving

observer. Thus, our discussion becomes interesting only when we consider the plates once more

fixed at the opposite sides of the wormhole throat. In this context, the proper thermal correction to

RHFE is given by [26]

∆TF = − S

32πL3
eff

∞
∑

n=1

[

coth (nπβ̃)

(nβ̃)3
+

π

(nβ̃)2 sinh2 (nπβ̃)

]

+
π2SLeffT

4

90
, (21)

where β̃ = 1/2TLeff , with Leff given by (18).

Next, we consider the renormalized thermal correction to the Casimir energy - the proper ther-
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mal internal energy - which is defined as

U ren(T ) = −T 2 ∂

∂T

(∆TF

T

)

. (22)

From Eq. (21), one obtains

U ren(T ) =
S

16πL3
eff

{

∞
∑

m=1

[coth(πmβ̃)

(mβ̃)3
+

π

(mβ̃)2 sinh2(πmβ̃)
+

π2 coth(πmβ̃)

mβ̃ sinh2(πmβ̃)

]

− π3

30β̃4

}

.

(23)

We notice that this expression depends on the proper temperature and the proper geometrical pa-

rameters, including the effective distance between the plates through the wormhole.

Here, we consider again the Casimir thermal energy density, uren = U ren/SLeff , in the limit

b0/RU ≪ 1 in a hyperbolic Universe, which is given by

uren(T ) ≈ 3ζ(3)RUT
3

2πa(t0)b30
− π2T 4

30
+

27πR6
UT

2a3(t0)b30
e−3πRU/[3a(t0)b0T ], (24)

where we taken into account Eq. (19). The leading term is the first one, and the last is a little

exponential correction to Eq. (24), for m = 1. From Eq. (24) we can find that the Casimir thermal

energy goes to zero when the temperature vanishes. In Fig.2 we depict the Casimir thermal energy

density as a function of the ratio b = b0/2RU ≪ 1, and the temperature, T .

0.0000

0.00005

0.0001

b

0.00

0.05

0.10

T

0

1´ 1010

2´ 1010

3´ 1010

Figure 2: Casimir thermal energy density, as a function of the ratio, b = b0/2RU , and proper temperature, T , for
a(t0) = 1.
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In the present letter we have investigated the changes in the quantum vacuum energy density

of a massless scalar field inside a Casimir apparatus that orbits a wormhole, according to the

approach found in [12, 14]. We have considered the cosmological model with an isotropic form

of the Morris-Thorne wormhole, embedded in the universe (FLRW), found in [21]. In this sense,

we generalize the work of Sorge [12], by examining the effects of the Universe global curvature,

k, and its scale factor in a specific instant of the Universe history, a(t0), beyond the influences of

the local geometry as well as of inertial forces, on the Casimir energy density. We found that for

a flat Universe k = 0 and a(t0) = 1, this quantity is the same obtained in [12]. We also have

found that the Casimir energy density is higher in a hyperbolic Universe, lower in a spherical one,

and intermediary in a flat Universe, with the difference between them being higher as more distant

the plates are from the wormhole throat. It is worth also point out that their absolute magnitude is

always lower than that one measured in the Minkowsky spacetime with the plates at rest.

Finally, we have studied the behavior of this quantity when each plate is fixed without rotation

at opposite sides of the wormhole throat, at zero and finite temperatures. In this scenario, we have

taken into account the effective distance between them through the wormhole throat. We have

shown that the Casimir energy density and its thermal counterpart only are finite in a hyperbolic

Universe, when the plates are on the throat radius, and that these energies can be considerably large

for short radii compared with the Universe curvature radius, since the effective distance between

the plates is much shorter.
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