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Abstract

In this paper we study the vacuum quantum fluctuations of the stationary modes of an

uncharged scalar field with mass m around a Schwarzschild black hole with mass M , at zero and

non-zero temperatures. The procedure consists of calculating the energy eigenvalues starting from

the exact solutions found for the dynamics of the scalar field, considering a frequency cutoff in

which the particle is not absorbed by the black hole. From this result, we obtain the exterior

contributions for the vacuum energy associated to the stationary states of the scalar field, by

considering the half-summing of the levels of energy and taking into account the respective

degeneracies, in order to better capture the nontrivial topology of the black hole spacetime. Then

we use the Riemann’s zeta function to regularize the vacuum energy thus found. Such a regularized

quantity is the Casimir energy, whose analytic computation we show to yield a convergent series.

The Casimir energy obtained does not take into account any boundaries artificially imposed on

the system, just the nontrivial spacetime topology associated to the source and its singularity.

We suggest that this latter manifests itself through the vacuum tension calculated on the event

horizon. We also investigate the problem by considering the thermal corrections via Helmholtz

free energy calculation, computing the Casimir internal energy, the corresponding tension on

the event horizon, the Casimir entropy, and the thermal capacity of the regularized quantum

vacuum, analyzing their behavior at low and high temperatures, pointing out the thermodynamic

instability of the system in the considered regime, i.e. mM ≪ 1.
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I. INTRODUCTION

One of the physical phenomena which is an unequivocal manifestation of the vacuum as-

sociated with quantum fields is the so-called Casimir effect [1]. In its original form, this effect

occurs due to stochastic fluctuations in the vacuum expected value of the electromagnetic

field and, thus, a finite vacuum energy arises because the presence of metallic boundaries,

causing an attraction between them, despite the fact that they are electrically uncharged.

As stated above, the effect occurs with any quantum field and is quite depending on the

geometry under analysis [2–6]. From a theoretical perspective, this phenomenon offers a

large realm of studies for applied Mathematics [7–9]. From the experimental point of view,

measurements of the Casimir force have been performed with increasing precision [10–12].

It was also remarked that the Casimir effect can occur as a consequence of a nontrivial

topology of the physical space [13–16] or even of more abstract spaces, as those ones as-

sociated to quantum states [17–19]. In certain sense, the Casimir effect reflects a way to

measure different topologies of a given system. Regarding the first kind of topological (or

global) Casimir effect, some of these systems, from condensed matter to astrophysics and

cosmology, have been extensively investigated [20–26]. However, with respect to black holes,

there are no studies related to the Casimir effect due to the spacetime topology itself, but

just those ones which explore features of the spacetime geometry, with the imposition of

external boundaries to the field [27–30]. In addition, there exist the known difficulties to

one define global energy in the context of general relativity, hence the use of local quantities

(densities) in these works, as vacuum expectation values, in order to describe that effect.

The nontrivial topology of the black hole spacetime is essentially dictated by the presence

of the singularity in it. Thus, we raise here the question: What is a singularity and how

can we detect it? In particular, do black holes in fact “pierce” the spacetime? From a

mathematical viewpoint this question was already addressed (a nice discussion of how to

treat spacetime singularities can be found in [31]). The best way is just to analyse the holes

left by the singularity and study the behavior of geodesics in this new manifold: Basically we

use the singularities theorems. However the idea of adding a hole to the spacetime changes

drastically its topology. From a physical viewpoint and in the context of semiclassical gravity

there is a way to detect such a change of topologies, which is through the computation of

the Casimir energy as we point in this work.
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In this paper, we will study the quantum vacuum energy of an uncharged massive scalar

field, initially at zero temperature, in a topologically nontrivial space, namely, in the back-

ground of the Schwarzschild metric. In order to do this, we will calculate the energy eigen-

values ωn in the low frequency regime after finding the exact solutions for the field dynamics.

These energies correspond to the stationary states of the field around the black hole. We

will compute the half-sum of the eigenvalues of energy supposing that it captures better

than certain local quantities features of the spacetime topology under consideration. Thus

the called global Casimir energy at zero temperature associated with quantum fluctuations

of the massless scalar field will be obtained through the expression E0 =
~

2

∑

n gnωn, where

n indexes the modes of the field and gn computes the degeneracies per mode. The vacuum

energy calculated from this formula is divergent and then it will be regularized by using the

Riemann’s zeta function procedure. Such a regularized quantity is the Casimir energy. It is

worth point out that we will consider only the contribution due to the stationary states of

the field for such a quantity, i.e., those states which do not tunnel into the black hole. As it

is known, the black hole singularity cannot classically manifest itself for anyone out of the

event horizon, according to the cosmic censure hypothesis. We will show here that at least

from a semi-classical point of view this is possible, and we advocate that the global Casimir

effect permits, in principle, to identify the singularity.

Then, we will show that the Casimir tension on the event horizon due to that energy

suggests the presence of the black hole singularity because a remaining value arises for such a

tension when its mass vanishes. The same problem will be analyzed also at finite temperature

through the computation of the Helmholtz free energy, from which we will obtain the Casimir

internal energy, the corresponding tension on the horizon, and the Casimir entropy. Here

a remaining tension arises again pointing to the presence of the singularity. We will also

show that both Casimir tension and entropy reach constant and minimum values in the high

temperature regime.

The present paper is organized as follows: In section II, we present the exact solutions

for the scalar field around the black hole, calculate the Casimir energy as well as the tension

on the event hoorizon in the low frequency limit, and analyze the thermal effects on the

Casimir energy. Finally, in section IV, we conclude and close the paper.
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II. THE GLOBAL CASIMIR ENERGY

Prior to study the global Casimir effect around a static black hole, we must briefly

investigate the behavior of a massive scalar field in the background of the Schwarzschild

solution.

A. The field solution

The solutions of a scalar field around the static black hole was already discussed in 1998

in the Frolov et al. book [32]. In this book there are some references from the fifties about

the earlier works on that subject. It is important to remark that those works considered

only approximate solutions to the problem. The reason for these comments is the absence

in the literature, until recently, of the exact and complete solutions for the field dynamics

around these objects, a problem that has just been solved in [33–35] for the scalar field due

to the development of the Heun functions studies in recent years.

In this way, we must solve the covariant Klein-Gordon equation, which is the equation

that describes the behavior of scalar particles in the spacetime under consideration. In a

curved spacetime, we can write the Klein-Gordon equation of a uncharged massive scalar

particle coupled minimally with the gravity as
[

1√−g
∂µ (g

µν√g∂ν) +m2

]

Ψ = 0 , (1)

where we adopted the natural units c ≡ ~ ≡ 1 and m is the particle mass. On the other

hand, the background generated by a static and uncharged black hole is represented by the

Schwarzschild metric [36], which in the Boyer-Lindquist coordinates [37] can be written as

ds2 =

(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2 − r2dΩ2, (2)

where dΩ2 = dθ2− sin2 θ dφ2 and M is the mass of the source, with G ≡ 1. In order to solve

the Eq. (1), we assume that its solution can be separated as follows

Ψ = Ψ(r, t) = R(r)Y ml

l (θ, φ)e−iωt , (3)

where Y ml

l (θ, φ) are the spherical harmonic functions. Plugging Eq. (3) and the metric

given in Eq. (2) into (1), we obtain the following radial equation

d

dr

[

r(r − 2M)
dR

dr

]

+

(

r3ω2

r − 2M
−m2r2 − λlml

)

R = 0, (4)
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where λlml
= l(l + 1).

This equation has singularities at r = (0, 2M), and at r = ∞, and can be solved in terms

of Heun-type equation, which solutions are

R(x) = C1e
1

2
αxx

1

2
βHeunC(α, β, γ, δ, η; x) + C2e

1

2
αx x− 1

2
β HeunC(α,−β, γ, δ, η; x) (5)

where x = r − 2M and r runs over the range 2M < r < ∞, C1 and C2 are constants, and

the parameters α, β, γ, δ, and η are given by [34]

α = −4M
(

m2 − ω2
)1/2

(6a)

β = i4Mω (6b)

γ = 0 (6c)

δ = 4M2
(

m2 − 2ω2
)

(6d)

η = −l(l + 1)− 4M2
(

m2 − 2ω2
)

. (6e)

These two functions are linearly independent solutions of the confluent Heun differential

equation provided β is not an integer [38].

In order to compute the global Casimir energy, we must calculate firstly the energies

associated to the stationary states of the massive scalar field around the black hole. In

order to do this, we need evaluate the natural boundary conditions on the field solutions

at the asymptotic region (infinity), which in this case requires the necessary condition for a

polynomial form of R(x), since that the confluent Heun solutions have irregular singularities

there. Following [39], we must impose the so called δN and ∆N+1 conditions, respectively

δ

α
+

β + γ

2
+ 1 = −n (7)

∆N+1 = 0 (8)

with n a positive integer. Provided the fulfilment of the above two δ−conditions, the con-

fluent Heun solutions reduces to a polynomial of degree N , as described there in Ref. [39].

The first condition Eq. (7) gives the following expression for the energy levels

n+ 1 + i2Mω − M (2ω2 −m2)√
m2 − ω2

= 0. (9)

Now, we consider the low frequency limit, ωM → 0, which means that the particle is not

absorbed by the black hole. In fact, the relative absorption probability of the scalar wave
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at the event horizon surface of a static and uncharged black hole is given by [33]

Γab = 1− e−8πMω, (10)

and, in the considered limit, that probability approximates to zero. In this regime, the

particle does not penetrate via tunneling the effective potential barrier that exists around

the black hole (the Regge-Wheeler potential), in such a way that the reflection coefficient

tends to the unity [40]. In fact, any stationary solution, namely, that with a real frequency

is formed by waves that propagate outward from the event horizon superposing with the

waves that tunnel out through the Regge-Wheeler barrier and move toward the horizon.

Imposing the condition of no waves coming out from the horizon introduces complex valued

frequencies. When ω is complex the solution corresponds to quasi-bound states.

The considered limit Mω → 0 also can be thought as a cutoff introduced in order to

eliminate high frequencies, as usual in the analysis of the Casimir effect. It is worth yet

notice that, for m = 0 and in that approximation, we have the solution n = −1, which does

not make any sense. This seems to suggest that, while classically orbits (unstable) for such

a kind of particle exist just at r = 3M [40], quantum mechanically they do not exist in any

way, i.e., there is no massless stationary states exterior to the black hole.

Then, we take into account the possible states which are stationary around the black hole

and therefore the real eigenvalues of energy have the form

En = mc2
√

1− G2m2M2

~2c2n2
, (11)

for n = 1, 2, 3.... It is worth point out that Eq. (11) was also found in [41] by following a

different approach. Notice that the bound energy En,b = En−mc2 reaches a minimum equal

to −mc2 when GM/c2 = n~/mc or RS/2 = nλC , where RS is the Schwarzschild radius and

λC is the Compton length of the particle. Thus, in order to consider all the quantum states

of the particle, i.e., without a bounded n, we must have λC ≥ RS/2, which is compatible

with the low frequency limit that we are using in here, implying real energies and therefore

without the possibility of the tunnel effect to the black hole interior.

We have reintroduced the fundamental constants in Eq. (11) in order to call atten-

tion to the fact that its non-relativistic approximation, O(1/c2) → 0, after subtracting the

rest energy of the particle, is exactly equal to the Bohr’s energy levels of a “gravitational
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hydrogen-like atom”, namely

En ≈ −G2m3M2

2~2n2
, (12)

which also was obtained in [42, 43]. This last result points out the consistence of our analysis

until here.

B. Regularized vacuum energy at zero temperature

By considering Eq. (11), we have that the quantum vacuum energy of the massive scalar

field at zero temperature is

E(0) =
1

2

∞
∑

n=1

n2ωn =
m

2

∞
∑

n=0

n2

√

1− m2M2

n2
, (13)

in which we again used the natural units. The factor n2 comes from the degeneracy of the

system. It is possible to show easily that the sum in Eq. (13) is divergent, and in order

to make that quantity finite, or regularized, we need adopt a regularization procedure here,

and we choose to do this by means of the Riemann’s zeta function. Firstly, we will use the

binomial expansion of the square root so that

E(0) =
m

2

∞
∑

n=1

n2

[

1 +
∞
∑

k=1

(

1/2

k

)

(−1)k
(

mM

n

)2k
]

. (14)

Regularizing via the zeta function, we arrive at

E(0)
reg =

m
√
π

4

∞
∑

k=1

(−1)k(mM)2kζ(2k − 2)

Γ(k + 1)Γ(3/2− k)
, (15)

where we have used ζ(−2) = 0. This expression converges for mM < 1. The series term

corresponding to k = 1 is the contribution of the gravitational Bohr levels, as per Eq.

(25), to the regularized quantum vacuum energy, which are non-relativistic and prevalent,

therefore, in regions quite far from the horizon. Notice that we are not taking into account

any scattered states which can occur in those regions.

We depict in Fig. 1 the Casimir energy per mass unity of the scalar particle as a function

of the product mM in units of Planck energy (EP ). The maximum value is E
(0)
reg ≈ 0.015EP

reached at mM ≈ 0.67.

It is worth to point out that, in general, the Casimir energy depends on some geometrical

parameter of the system. In our case, it is a function of the horizon radius, since the
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FIG. 1: Casimir energy per mass unity of the scalar particle as a function of the product mM , at

T = 0.

dependence on the black hole mass is in fact on the Schwarzschild radius, Rh = 2M . In

addition, that energy must cause a surface tension, which can be defined as the reversible

work of formation of a unit area of surface and is given by τ = ∂E/∂S, where S is the

surface area. Thus, the tension on the horizon surface, of area Sh = 16πM2, is given by

τh =
∂E

(0)
reg

∂Sh
=

m

64
√
πM2

∞
∑

k=1

(−1)kk(mM)2kζ(2k − 2)

Γ(k + 1)Γ(3/2− k)
. (16)

We can see that the first term of the above series does not depend on the mass of the black

hole, so that for M → 0 this tension tends to τh = m3/128π. We consider this term as one

that arises from the black hole singularity. Whereas the Casimir energy does not furnish any

indication about the nontrivial topology of the spacetime given by the presence of the black

hole singularity, the fact that the horizon surface tension is non-null when its mass goes to

zero suggests the existence of that singularity, and therefore of the nontrivial topology of the

spacetime under analysis. It is worth also notice that other nontrivial topologies without a

singularity, as the surface of an ordinary sphere, does not present residual Casimir tension

when its radius tends to infinity, i.e., when the spacetime is “flatted” [13].
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C. Temperature effects

We analyze now the thermal corrections to the Casimir energy from the calculation of

the Helmholtz free energy, given by [13]

F (0) = β−1
∞
∑

n=1

n2 log [1− exp (−βωn)] = β−1
∞
∑

n=1

n2 log

[

1− exp

(

−βm

√

1− m2M2

n2

)]

,

(17)

where β = 1/kBT . The purpose here is verifying the behavior of these corrections when the

mass of the black hole vanishes in order to see how the singularity appears. Therefore, we

will consider the regime in which mM ≪ 1 so that the free energy becomes

F (0) ≈ −β−1
∞
∑

n=1

n2
∞
∑

k=1

e−βkm

k

(

1 +
βm3M2k

2n2

)

, (18)

where we made the series expansion of the logarithm. Regularizing this quantity via Rie-

mann’s zeta function and considering again that ζ(−2) = 0 we get

F (0) ≈ −
∞
∑

k=1

e−βkmm3M2

2
ζ(0) =

m3M2

4(eβm − 1)
. (19)

The thermal corrections to the Casimir energy - the internal energy - are given by

U (0)(T ) = −T 2∂F
(0)/T

∂T
≈ m3M2

4(eβm − 1)
− βm4M2

16 sinh2 (βm/2)
. (20)

It is immediate to verify that these corrections go to zero when M → 0. Here there are

also no clues about the black hole singularity. However, if we take again into account the

tension on the event horizon due to the Casimir thermal energy (20), in that limit we have

the exact expression for the remaining tension

τh(T ) =
m3

64π(eβm − 1)
− βm4

256π sinh2 (βm/2)
, (21)

which denotes the presence of the singularity. The high temperatures limit for this ten-

sion goes to a constant and minimum value given by τh(T ) ≈ −m3/128π, which is the

opposite value to the case at zero temperature. Thus, in this regime the total ten-

sion on the horizon vanishes. In the low temperatures limit the remaining tension is

τh(T ) ≈ (m3 − βm4)e−βm/64π. In Fig.2 we depict the remaining Casimir tension on the

event horizon, as a function of the temperature, in Planck unities. Notice the curve evolution

to a constant value at high temperatures.
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FIG. 2: Remaining thermal Casimir tension on the event horizon as a function of the temperature,

in Planck unities, for m = 0.5EP .

Another interesting quantity that we can calculate in the regime under consideration

(mM ≪ 1) is the Casimir entropy, S(0) = −∂F (0)/∂T , whose leading term is

S(0) ≈ − kBβ
2m4M2

16 sinh2 (βm/2)
. (22)

In the low temperatures limit, the Casimir entropy is given by S(0) ≈
−(1/16)β2m2M2 exp (−βm), so that when T → 0, S(0) → 0, obeying the third law

of thermodynamics, therefore. In the high temperatures limit, the Casimir entropy tends

to the constant value

S(0) ≈ −kBm
2M2

4
. (23)

It is interesting to point out also that the Casimir entropy is proportional to the horizon

area, exactly as in the Hawking entropy. The negative values found for the entropy indicate

that we are not taking into account all the history. In fact, we are considering here only

the entropy of the vacuum associated to the stationary states of the quantum field. On the

other hand, the heat capacity at constant volume, given by

CV = T

(

∂S(0)

∂T

)

V

≈
m4M2csch2

(

m
2kBT

)

8kBT 2
−

m5M2 coth
(

m
2kBT

)

csch2
(

m
2kBT

)

16k2
BT

3
, (24)

is always negative, according to the FIG.3 below, which points to the thermodynamic in-

stability of the quantum vacuum under consideration, besides the positive values for the

Helmholtz free energy given in Eq. (19).
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FIG. 3: The heat capacity (at constant volume) of the quantum vacuum as a function of the

temperature, in Planck unities, for m = 0.5EP .

III. CONCLUDING REMARKS

In summary, we have initially presented analytic solutions of the Klein-Gordon equa-

tion for an uncharged massive scalar field in the spacetime of a static spherical source

(Schwarzschild’s spacetime). Then we have drawn the energy eigenvalues of that field in the

regime under which ωM → 0, so that the particle does not tunnel into the black hole. The

consistence of these calculations was shown via non-relativistic limit in which we obtained

the gravitational analog of the Bohr’s levels valid for the hydrogen atom. It is worth point

out that here we are not working with quasi-normal states, and then the complex energies

were eliminated by that cutoff condition.

By half-summing the energy eigenvalues and considering the respective degeneracies al-

lowed us to find the vacuum energy associated to the stationary modes of the scalar field,

regularizing it by the Riemann’s zeta function procedure. The Casimir energy was thus

calculated exactly, without taking into account any external boundary, just the spacetime

topology itself. Hence we have used the half-sum over the energy eigenvalues instead of

local quantities such as the vacuum expected value of the momentum-energy tensor, as it

is usual. We have shown that the Casimir energy vanishes when we get the limit M → 0,

but the Casimir tension on the event horizon is non-null. This fact reveals, in some sense,

the nontrivial topology of the spacetime under investigation due to the presence of the sin-
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gularity at r = 0. Surprisingly, such a singularity can be identified even when one considers

only completely exterior stationary quantum states.

Finally, we have studied the thermal corrections to the Casimir energy via computation

of the Helmholtz free energy in the limit that interest us here, mM ≪ 1. The thermal

Casimir energy also vanishes when the black hole mass tends to zero. However, the thermal

tension on the surface of the event horizon once more presents a finite value in this limit,

unrevealing again the black hole singularity. However, at high temperatures, this remaining

tension on the horizon tends to a constant and minimum absolute value, opposite to the

value found in the T = 0 case. Thus, the total Casimir tension vanishes, which is compatible

with the generally accepted catastrophic disappearing of the black hole at its final stages

of evaporation, provided the temperature of the thermal bath be that one of the Hawking’s

radiation, TH , i.e. T = TH ∝ 1/M . We also have calculated the Casimir entropy, which

is proportional to the horizon area, as the Hawking’s (black hole) entropy. That quantity

can be in fact interpreted as being the lowest IR contribution to this latter, since it was

oobtained from the stationary states of the scalar field. Moreover, we have shown that at

low temperatures the Casimir entropy obeys the third law of thermodynamics. At high

temperatures, the Casimir entropy also goes to a constant and minimum value. The heat

capacity is always negative, showing that, besides the positive values for the Helmholtz free

energy, the quantum vacuum is thermodynamically unstable in the considered regime.

As perspectives of the work, we point out the generalization to other quantum fields as

well as to stationary and charged spherical gravitational sources, among other solutions. It

would be interesting also compare these results with those ones of some effective quantum

gravity theories, which predict the existence of a remnant black hole mass that does not

evaporate at all [44]. By calling attention to these cases, we hope find a general way of

capturing the presence of the singularity via semiclassical gravity, specifically by the global

Casimir effect.
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