
Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Road vehicle emission inventory of a Brazilian metropolitan area
and insights for other emerging economies

Nara Angélica Policarpoa, Carla Silvab, Tâmara Freitas Aragão Lopesc,
Rinaldo dos Santos Araújoa,c, Francisco Sales Ávila Cavalcantea, Cira Souza Pitombod,
Mona Lisa Moura de Oliveiraa,c,⁎

a State University of Ceará, Av. Dr. Silas Munguba 1700, 60.714.903 Fortaleza, Brazil
b Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Portugal
c Technology Federal Institute of Ceará, Av. Treze de Maio 2081, 60.040-531 Fortaleza, Brazil
dDepartment of Transportation Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São
Carlos, SP 13566-590, Brazil

A R T I C L E I N F O

Keywords:
Urban air pollution
Mobile combustion sources
Biofuels
Emission policies
Bus rapid transit

A B S T R A C T

The vehicle fleet in the Ceará state has grown 180% over the last ten years. The growth of the
resulting emissions is unknown in view of the expansion of this fleet in the greater Fortaleza
Metropolitan Area (FMA). The largest fleet in the FMA is in the Fortaleza city itself, where flex
fuel vehicles predominate (∼30%). Flex fuel motorcycles increased significantly (greater than
800%) between 2010 and 2015. This paper aims to estimate the road vehicle emissions of carbon
monoxide (CO), non-methane hydrocarbons (NMHC), aldehydes (RCHO), nitrogen oxides (NOx),
and particulate matter (PM) from the main road vehicle fleets of Fortaleza and its metropolitan
area using a macrosimulation, bottom-up method, between 2010 and 2015. The results showed
that road vehicle emissions of CO, NMHC and RCHO increased mainly by Otto cycle vehicles
increase due to the introduction of flex fuel vehicles; however, the NOx and PM emissions no-
ticeable reduction is also a result of emission policies that seed the introduction of new tech-
nologies. In 2015, more than 70,000 tons of CO (21.2 ton/1000person), 8000 tons of NMHC
(2.5 ton/1000person), 290 tons of RCHO (0.09 ton/1000person), 15,000 tons of NOx (4.4 ton/
1000person) and 600 tons of PM (0.2 ton/1000person) were emitted in the region under study.
Comparing with other Brazilian regions, FMA emit higher levels of pollutants per inhabitant than
the state of São Paulo and the state of Rio de Janeiro but lower levels than Porto Alegre city.

1. Introduction

Passenger and goods transport in Brazil is done mainly by road, and is highly dependent on fossil fuels. In 2014, the transport
sector in Brazil consumed more than 60% of oil products (e.g. gasoline and diesel), and the road segment represents roughly 70% of
the total energy consumption. Therefore, this sector is one of the main sources of urban air pollution, creating problems to the
environment and to human health due to its combustion (MME, 2015; Morishita et al., 2006; Progiou and Ziomas, 2011; Silva et al.,
2006; Souza et al., 2013; Zhang and Batterman, 2013). Ethanol biofuel blended with gasoline has been increasing since 2003 and
since 2015 the gasoline sold has 27% bioethanol in it. The ethanol use reduces the oil dependence because it is produced by
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endogenous sugar cane, and represents roughly 20% of the energy consumption in this road sector.
Fortaleza is the capital of the state of Ceará in northeastern Brazil, and has the seventh largest vehicle fleet in the country (387/

1000 inhabitants) (DENATRAN, 2016). Currently, the Fortaleza Metropolitan Area (FMA), which includes 19 municipalities around
the city of Fortaleza (including Fortaleza), is the sixth largest metropolitan area in Brazil (Cassiano et al., 2016; Cavalcante et al.,
2009; IBGE, 2016). According to data from the Traffic State Department of Ceará (DETRAN-CE), the vehicle fleet of Ceará grew about
180% over the last ten years. In 2015, the FMA road vehicle fleet had more than one million vehicles, of which 75% were in Fortaleza
itself (DETRAN-CE, 2017). This substantial increase in the road vehicle fleet has become an important source of urban air pollution in
the region and, as well as result of this growth; there has been an increase in the number and size of traffic jams as well as ever
increasing emissions of pollutants into the atmosphere. This scenario, which is common in large urban centers, is striving the need to
carrying out studies concerning emissions (Cassiano et al., 2016a; Cavalcante et al., 2009; Schifter et al., 2005; Souza et al., 2013;
Vivanco and Andrade, 2006), especially when considering atmospheric emission inventories as a management tool to improve the air
quality of the local population. Besides, a monitoring network of air quality does not exist in FMA, and regarding data reported in
literature information is scarce and limited to a couple of pollutants for the region (Cassiano et al., 2016b; Cavalcante et al., 2016;
Rocha et al., 2016).

Several studies carried out in Brazil have pointed out a reduction of emissions with the gradual implementation of programs such
as PROCONVE (Program for Control of Air Pollution by Automotive Vehicles) and PROMOT (Air Pollution Control Program for
Motorcycles and Similar Vehicles) (CETESB, 2016; IBAMA, 2011; Réquia et al., 2015; Souza et al., 2013; Szwarcfiter et al., 2005;
Ueda and Tomaz, 2011). Internationally, the guidelines of the EURO standards have, in particular, been a reference for the in-
troduction of such regulatory policies worldwide (Cai and Xie, 2007; Jing et al., 2016; Tang et al., 2016). In Brazil, the current phases
of PROCONVE/PROMOT are L6 for Otto cycle vehicles, P7 for Diesel cycle vehicles and M4 for motorcycles, as presented in the
literature (DieselNet, 2016; IBAMA, 2011; MMA, 2013).

At present, Brazil follows the EURO V standard, which since January 2012 foresaw the implementation of the exhaust after-
treatment system, namely SCR – Selective Catalytic Reduction (Oliveira et al., 2011), for heavy diesel vehicles (i.e. buses and trucks).
The technologies put into automotive vehicles, especially exhaust gas aftertreatment systems, and have been able to significantly
reduce the emissions of polluting gases from vehicles over the years (Faiz, 1993). Gases such as carbon monoxide (CO), nitrogen
oxides (NOx), sulfur dioxide (SO2), particulate matter (PM), aldehydes (RCHO) and non-methane hydrocarbons (NMHC) are the main
ones that have been reduced. However, these measures are still not sufficient. Consequently, road vehicle emission reductions are still
being studied by the automotive industry, which is seeking technologies to lower emissions levels even further, since environmental
standards are becoming increasingly restrictive (Aguiar et al., 2015; Elfasakhany, 2016; Lewtas, 2007; Ouyang et al., 2014; Shahir
et al., 2015a, 2015b; Suarez-Bertoa et al., 2015; Szklo et al., 2005; Iodice et al., 2016; Zhu et al., 2014).

The first step to quantify the urban air pollution in cities is usually through a mobile source emissions inventory. Road vehicle
emission inventories have been made in various large urban centers of Brazil (e.g. Porto Alegre – RS, Rio de Janeiro – RJ, São Paulo –
SP, Vitória – ES) and around the world (e.g. Buenos Aires, London, Mexico City, New York, India, China, Norway). These measures
have been taken by environmental agencies and other segments of the society in order to evaluate emissions and propose controls
through public policies (Arriaga-Colina et al., 2004; CETESB, 2016; Cooper et al., 2014; D’Avignon et al., 2010; Fujita et al., 1992;
López-Aparicio et al., 2017; MMA, 2013; Ozan et al., 2011; Schifter et al., 2005; Souza et al., 2013; Susilo et al., 2007; Venegas et al.,
2011). An inventory of road vehicle emissions of air pollutants compiles fleet data over a given period in a given region. This has been
shown to be a low-cost and fast-response tool that is extremely effective in assisting air quality models in urban centers (CETESB,
2016; D’Avignon et al., 2010; EPA, 2017; López-Aparicio et al., 2017; Pu et al., 2015), since detailed registration through monitoring
networks is expensive (Réquia et al., 2015; Righi et al., 2013) and, according to Vormittag et al. (2014), there are only 252 mon-
itoring stations in Brazil, which encompasses only 1.7% of Brazilian cities. In addition, estimated road vehicle emissions from
inventories can be used as the input to a database for pollutant dispersion models (Jing et al., 2016; Tang et al., 2016) and, therefore,
air quality forecasts (He et al., 2016).

There are two usual methodological approaches: the bottom-up (BU) and the top-down (TD). The former refers to using emission
factors per vehicle category in a specific region/city and eventually aggregated to give a National perspective and the latter usually
refers to spatially aggregated data (Nationally wise) disaggregated to provide insight on a specific region/city. This is also used when
looking to the energy consumption methodologies (Horowitz and Bertoldi, 2015).

An extensive literature recommends the use of the bottom-up method used by the United States Environmental Protection Agency
(EPA, 1994; Singer, 1998; Perugu et al., 2017), which has been shown to be effective in estimating vehicle emissions (Colvile et al.,
2001; Cook et al., 2006; Pu et al., 2015; Righi et al., 2013; Wang et al., 2009; Zhu et al., 2014). This method uses data of the local fleet
in circulation, combined with pollutant emission factors and annual mileage of vehicle (CETESB, 2016; MMA, 2013; Souza et al.,
2013; Teixeira et al., 2008; Wang et al., 2009). Emission factors are one of the complex parameters that are acquired through models
validated for emission measurements and driving cycle tests, and include vehicle characteristics, vehicle classification and age, fuel
type, as well as emission control policies among other characteristics (Cassiano et al., 2016a; Cook et al., 2006; Gallus et al., 2016;
Jing et al., 2016; Lawrence et al. 2016; Oduro et al., 2016; Pu et al., 2015; Schifter et al., 2005; Song et al., 2016). In addition, the
emission factor is an indicator of emission control coming from the technological evolution of motor vehicles (CETESB, 2016). In the
last years, emission factors are extensively acquired through the COPERT (COmputer Program to calculate Emissions from Road
Transport) (Jing et al., 2016; Song et al., 2016). Based on Tier 3 approach (EEA, 2016), COPERT is the most complete bottom-up
method since it accounts all type of exhaust and non-exhaust road vehicle emissions such as hot-running, cold-start, urban, rural, and
highway emissions.

In China, for example, Tang et al. (2016) published estimates for the years 2006–2010, as the total number of vehicles increased
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from 14.5 million in 1999 to 78.1 million in 2010 – an increase of 437% in 12 years, due to the fast development of the Chinese
economy. They concluded that gasoline vehicles are the largest emitters of pollutants such as CO and VOC (Volatile Organic Com-
pounds), while Diesel cycle vehicles are the highest responsible for emissions of NOx, PM2.5 (fine particulate matter), PM10 (inhalable
particulate matter) and BC (black carbon).

Studies of this nature have been practically non-existent in the northeast of Brazil, which is surprising since Fortaleza is the
seventh largest capital of Brazil. Additionally, this study employs a useful, low-cost and no time-consuming tool to estimate vehicular
emissions in any city compared with the usage of monitoring stations. Such estimates are crucial on the prediction of pollutant release
trends by road transports, as well, to capture the effects of new public transport solutions such as BRT and the increase of biofuels in
the road transportation sector such as ethanol up to 100% in volume blends. Recent efforts have been made to develop computational
tools aiming to integrate inventory regional data with worldwide databases (Alonso et al., 2010). This will also be the basis for air
pollution dispersion models.

The present study is the first inventory of road vehicle emissions for Fortaleza and five of the major towns in its metropolitan area
with the largest road vehicle fleets for the years 2010–2015. Using a macrosimulation bottom-up method this research aimed to
estimate the road vehicle emissions of CO, NMHC, RCHO, NOx, and PM, considering the main categories of vehicles and types of fuels
used in Brazil (i.e. gasoline, hydrated ethanol, and diesel).

2. Methodology

Air pollution concentration data is essential for mitigating the source of emissions and protecting human health. Ideally, this data
could be obtained from air pollution monitoring stations that usually developing countries do not have. Other way is to gather on-
board emission factors from real world driving but is a time consuming and expensive procedure. Therefore a first and cheaper
approach of getting pollutant levels is by using simulation models with actual road transport data. Therefore, the methods described
hereafter could be replicated for other developing countries and a sense of the uncertainty of the data is provided. For PM emissions
the scope is only the tailpipe. So no brakes, tires and pavement wear are considered.

2.1. Characterization of the studied area

The state of Ceará, located in northeastern Brazil, has 184 municipalities and had a fleet of 2,828,433 vehicles in December 2015.
Of this total, 1,370,303 vehicles belong to the Fortaleza Metropolitan Area (FMA), which encompasses 19 municipalities, including
the capital Fortaleza (DETRAN-CE, 2017). Therefore, the FMA vehicle fleet corresponds to almost 50% of the total number of vehicles
in the state. The present study aims to estimate the road vehicle emissions from 2010 to 2015 for the FMA which includes the city of
Fortaleza itself and the five main cities with the major vehicle fleets, namely Caucaia, Maracanaú, Maranguape, Eusébio, and Pacajus
(see Table 1). The inventory work was based on the main pollutants from the exhaust of automotive vehicles: CO, NMHC, RCHO, NOx

and PM, as reported in the literature (CETESB, 2015; Fujita et al., 1992; Schifter et al., 2005; Song et al., 2016; Souza et al., 2013;
Tang et al., 2016; Wang et al., 2009; Zhu et al., 2014).

2.2. Estimation of emissions

The automotive fleet increase and the current patterns of consumption, among other factors are the cause of increasing emissions
of air pollutants. In urban traffic, emissions of pollutants and fuel consumption are impacted according to characteristic traffic events,
such as overtaking, traffic jams, sudden stops, type of road, pavement and driving style (moderate, aggressive), among others
(Cassiano et al., 2016a; Chatterton et al., 2015). Furthermore, the emission factors (EF), that came from Environmental Sanitation
Technology Agency of the state of Sao Paulo (CETESB) (2015), applied in the present research were not specific by each of these
traffic events. This is a limitation of most macrosimulation models e.g. the COPERT software, which is able only to account for
different average speeds in urban rural and highway segments (EEA, 2016). In addition, the use of COPERT software to estimate road
vehicle emissions would be helpful to validate the results obtained for FMA during the studied years. On the other side, Smit et al.
(2017) concluded that COPERT underestimated emission results by a factor of 7–37% according to pollutant type. Alonso et al.
(2010) summarize the main macrosimulation models used in regional emissions inventories. All bottom-up approaches with emission

Table 1
FMA main urban areas and their characteristics in 2015.

Urban areas Road vehicle fleeta Populationb Motorization index (vehicles/1000 inhabitants) Territorial areab (km2)

Fortaleza 1,009,695 2,609,716 387 314.93
Caucaia 79,163 358,164 221 1,228.51
Maracanaú 61,629 223,188 276 106.648
Maranguape 22,523 125,058 180 590.873
Eusébio 20,414 51,913 393 79.005
Pacajus 20,322 69,877 291 254.636

a DENATRAN (2015).
b IBGE (2016).
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factors taken from EPA or from average speed correlations (COPERT).
The authors opted to use the so called “bottom-up approach”, which means that specific emissions factors (in g/km) for each

powertrain technology are used and up-scaled to account for total mileage driven and total number of vehicles of each technology to
give a g/year overall fleet value. The bottom-up method adopted has been widely used by authors worldwide in an attempt to
estimate emissions in a microscale level of the main pollutants from internal combustion engine road vehicles (CETESB, 2016; Cook
et al., 2006; Baidya and Borken-Kleefeld, 2009; EPA, 1994; Huo et al., 2011; Jing et al., 2016; MMA, 2011, 2013; Souza et al., 2013;
Szwarcfiter et al., 2005; Wang et al., 2009; Wills and La Rovere, 2010). According to Palacios et al. (2001), the bottom-up approach is
mainly applied when local detailed data from road transport are known. Concerning the spatial resolution of the bottom-up method,
emission allocation over the studied area only could be determined through geostatistical computational tool (Réquia et al., 2015;
Tang et al., 2016). The method calculates the emissions considering the following variables: number of vehicles circulating in the
region under evaluation, average annual distance traveled for each type of vehicle and the emission factor. These variables en-
compass three large data sets that are introduced in Eq. (1), resulting in the total amount of pollutant emitted in the year studied.

∑ ∑= ⎛

⎝
⎜ × × ⎞

⎠
⎟

−E Fc IUadj EF ·10C,F,P,Y
C F

C,F,Y C,F,Y C,F,P,Y
6

(1)

where E is the vehicle emission for the base year [ton/year], Fc is the circulating fleet disaggregated per model-year [number of
vehicles], IUadj is the adjusted intensity of use [km/year], and EF is the emission factor [g/km]. Eq. (1) calculates road vehicle
emissions according to vehicle category (C), fuel type (F), pollutant (P) and base year (Y) (Colvile et al., 2001; Schifter et al., 2005; Pu
et al., 2015; Vivanco and Andrade, 2006).

2.2.1. Circulating fleet (Fc): Fortaleza city and FMA fleets
The data of the road vehicle fleet used to calculate the emissions was provided by the DETRAN-CE. The original data showed the

category of the vehicle, type of fuel and year of manufacture of the vehicle (model-year), for each of the six FMA urban centers
studied. The estimation of the emissions considered the following vehicle categories: cars, light commercials, motorcycles, which are
Otto cycle vehicles (gasoline, ethanol, and flex fuel) and light commercial vehicles, trucks, and buses, which are Diesel cycle vehicles.

In order to calculate the road vehicle emissions from the fleets of flex fuel vehicles (i.e. cars, light commercials, and motorcycles),
it is necessary to know the percentage of vehicles that choose to use gasoline and the percentage of those that opt to use ethanol. In
Brazil, the choice of gasoline or ethanol is based on the ratio of the prices of these fuels on the market (Dominutti et al., 2016;
Goldemberg et al., 2008), which is an extremely dynamic criterion. However, in the present study, we adopted the equation sta-
tistically adjusted by Rosa (2011). The fuel prices and their percentages calculated and applied to the flex fuel vehicle fleet are shown
in the supplementary data (Appendix A).

The truck fleet was subdivided into the subcategories of: semi-light, light, medium, semi-heavy and heavy, according to the
intensity parameters of use and emission factor that are specific for these subclasses (DNIT, 2008). In the present study, these
subclasses were defined from statistical sampling carried out by Lopes (2016) and grouped as trucks and heavy-duty trucks.

In studies such as these, it is recommended to apply scrap functions to simulate the percentage of vehicles that cease to circulate
for various reasons (e.g. mechanical deterioration, theft, accidents, and abandonment). This strategy makes the calculation of vehicle
emissions of the actual circulating fleet more realistic (Schifter et al., 2005; Souza et al., 2013; Wills and La Rovere, 2010). This paper
applied scrap functions, derived from statistical models, which included a Gompertz function (Eq. (2)), specific for Otto cycle ve-
hicles, and a renormalized logistic function (Eq. (3)) for Diesel cycle vehicles (CETESB, 2016; Lopes, 2016; MMA, 2013).

= − − +S(t) 1 e e[a b(t)] (2)

= + + +− − + −[ ] [ ]S(t) 1 e 1 ea·(t t ) 1 a·(t t ) 10 0 (3)

In Eqs. (2) and (3), S(t) is the fraction of vehicles in circulation, t is the age of the vehicle [years], a, b and t0 are coefficients
adjusted to the vehicle category as obtained in the literature (MMA, 2013; Souza et al., 2013).

Fig. 1 shows the scrap curves for the Otto and Diesel cycle fleets in the region under study. About 80% of the vehicle fleet is less
than 10 years old, showing that it is a young fleet. This data is in agreement with the road vehicle fleets of other major cities in Brazil
(Réquia et al., 2015).

The average age of a vehicle fleet assists in the evaluation of the emissions profile of the fleet, as well as indicating in which phase
of PROCONVE/PROMOT it was manufactured (CETESB, 2016). Eq. (4) calculates the average age of a given fleet for a specific year
based on the number of vehicles by model-year (Shibuya et al., 2015).

∑

∑
=

×
=

=

A
(Fc A )
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i 0
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i i

i 0

n

i
(4)

where An is the average age of the fleet in a base year [year], Fci is the number of vehicles in a given fleet disaggregated by model-
year [number of vehicles], and Ai is the age of the fleet given by model-year of the vehicles [year]. Fig. 2 shows the fleet evolution by
fuel type for Fortaleza and FMA from 2010 to 2015.
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2.2.2. Intensity of use (IU)
The intensity of use (IU) is the parameter that estimates the average annual distance traveled by the vehicles (CETESB, 2013;

MMA, 2013; Souza et al., 2013). In the present study, this parameter was taken from the CETESB (2015), and they are defined as the
reference values (IUref), but they require adjustment to local scenario. Thus, the IU obtained using Eq. (5) is referred to as the adjusted
IU (IUadj).

= ×IUadj IUref
Cobs
CestC,F,Y C,F,Y

C,F,Y

C,F,Y (5)

where IUadj is the adjusted intensity of use [km/year], IUref is the reference intensity of use [km/year], Cobs is the observed fuel
consumption [L/year] and Cest is the estimated fuel consumption [L/year]. All these parameters vary depending on the category of
the vehicle, the type of fuel and the base year.

The observed fuel consumption (Cobs) in Fortaleza and in each FMA municipality is the result of the linear interpolation of the
volume of fuel sold annually in Ceará, and in Brazil as well, according to the ANP (National Petroleum Agency) (ANP, 2016), as
shown in Fig. 3.

In order to obtain the estimated fuel consumption (Cest), Eq. (6) was applied (CETESB, 2015; MMA, 2013; Souza et al., 2013;
Wills and La Rovere, 2010). The Cest value is the circulating fleet (Fc – number of vehicles) multiplied by the reference intensity of
use (IUref – km/year) and divided by the autonomy of the vehicle (R – km/L), which is the distance a vehicle covers per liter of fuel.
The autonomy values for all fleets were also taken from the database of the Brazil's, specifically of CETESB (2015).

∑= × ÷Cest (Fc IUref ) RC,F,Y
F

C,F,P,Y C,F,P,Y C,F,Y
(6)

The Fc in Eq. (6) is the same as in Eq. (1). Thus, the road vehicle emissions were estimated for 16 categories of the Fortaleza and
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N.A. Policarpo et al. Transportation Research Part D 58 (2018) 172–185

176



FMA fleets for six years (2010–2015); which were: gasoline passengers cars, gasoline light commercials, gasoline motorcycles,
ethanol passengers cars, ethanol light commercials, gasoline/flex fuel passengers cars, ethanol/flex fuel passengers cars, gasoline/flex
fuel light commercials, ethanol/flex fuel light commercials, gasoline/flex fuel motorcycles, ethanol/flex fuel motorcycles, diesel light
commercials, diesel microbuses, diesel buses, diesel trucks and diesel heavy trucks.

2.2.3. Emission Factor (EF)
The Emission Factor (EF) is the mass of pollutant emitted by a vehicle when driven over a certain distance, usually expressed in g/

km. The emission factors are typically determined through driving cycles for light-duty, heavy-duty and motorcycles. In the case of
Brazil, such tests are conducted by vehicle manufacturers or importers that communicate EF values for CETESB. Thus, CETESB have
been certified technical agent of government, publishes EF on its road vehicle emission report annually (CETESB, 2013, 2016; MMA,
2013; Rosa, 2011), and these results include all the vehicle categories studied in this paper. Emission factors for air pollutants vary
according to the pollutant analyzed the vehicle category, the type of fuel and the model-year of the vehicle. In addition, factors such
as accumulated mileage, conditions of use, maintenance status and vehicle driving style, in addition to environmental conditions,
directly influence the emission of pollutants. Thus, it is recommended to add a correction factor to the EF, which is called the
deteriorated emission factor (EFdet) (Jing et al., 2016; MMA, 2011). In this paper, the EFdet was only used for cars and light com-
mercials of the Otto cycle, since, according to CETESB (2016), there is insufficient data for Diesel cycle vehicles and motorcycles to
determine a deterioration factor. Therefore, the uncorrected EF was adopted for these categories (see the supplementary data in the
Appendix B).

2.3. Validation of results

First the established spreadsheet model was replicated for São Paulo to compare with existing inventories and confirm that the
model is well set. After, real world on-board measurements were used to compare with flex-fuel vehicle data with pure ethanol
(E100) and gasohol (E27). Finally, for Fortaleza metropolitan area, the validation of results was done by comparing estimates with
allocated per capita Nacional emissions. The existing Brazilian national inventory reports the emissions of the all country without
spatial disaggregation by state or municipal district. It shows the emissions of the following pollutants: carbon monoxide (CO),
nitrogen oxides (NOx), non-methane hydrocarbons (NMHC), aldehydes (RHCO), particulate matter (PM).

As earlier pointed out, regional inventories of road vehicle emissions are usually reported as an outstanding policy instrument
regarding air quality. The present study appears as the first inventory of the city of Fortaleza and its Metropolitan Area. In order to
confirm that the model is well set it was applied in an already inventoried region, São Paulo, which uses the same bottom-up
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Fig. 3. Fuel demand for Brazil, Ceará, Fortaleza and FMA over studied years.

Table 2
Model assessment for the state of São Paulo.

Parameters CO NMHC RCHO NOx PM

Reported emissionsa (tons/year) 148,867 29,851b 583 18,725 75
Calculated emissions (tons/year) 137,217 13,486c 560 17,230 69
Errord (%) 7.8 54.8 3.9 8.0 8.1

a CETESB (2015).
b Exhaust, evaporative, and fueling emissions.
c Exhaust emissions.
d The error percentage stands for (calculated emissions-reported emissions)/reported emissions * 100%.
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approach. The results obtained were compared to the ones reported by CETESB (2015) and both of them are shown in Table 2. Data
concerning gasoline car fleet of the state of São Paulo are available at CETESB website. It is important to note that for NMHC
emissions reported by CETESB also included evaporative and fueling emissions to the total value presented in the table. Because of
that, it was found a 54.8% of difference between the reported and calculated values. Thus one can conclude the model is well set.

Other aspect is the deviation between published values and real driving values, in actual vehicle use. CETESB data is based on
dynamometer tests on UDDS – Urban Dynamometer Driving Schedule driving cycles. Real driving is not equal. Referring to a previous
study (Cassiano et al., 2016b), the authors used on-board equipment data to monitor NOx, CO and CO2 instantaneous emissions
(proportional to energy consumption, due to a combustion relation). Also simulate a flex fuel (PROCONVE L6) vehicle in several
driving cycles such as NEDC and HWFET. Additional monitored data on rush hour, off-peak hour and average 50 km/h and 80 km/h
trips were performed and the results are depicted in Fig. 4 as percentage differences from CETESB values, for NOx, CO and CO2.

Fig. 4 also gives an indication on how real driving emissions could be apart from those published. And of course this will be a
source of inaccuracy at the inventory level. CO2 emissions could be −60% to 190% different; CO −90% to 370%, and NOx −40% to
630%. This way of validating the emission factors is time consuming and expensive because it implies several real runs, on-board
equipment maintenance, calibration, and available drivers. Therefore it is not recommended for developing countries. It is more
suited to countries/cities with more resources e.g. Madrid (Ariztegui et al., 2004; Vedrenne et al., 2016).

The air quality monitoring stations usually are also scarce or inexistent in such countries, for example, Brazil has only 1.3
monitoring stations per 1 million inhabitants as opposed to Germany that has 23 (data from 2013) (Réquia et al., 2016). The MMA
document (MMA, 2011) shows the first Nacional inventory of emissions for Brazil giving overall emissions from historic data
1980–2009 and projections up to 2020. To have a kind of validation of our Fortaleza results we will represent the 2010–2015
prediction against our results divided per the number of vehicles.

3. Results and discussions

Table 3 shows the quantification and variation of road vehicle emissions of the CO, NMHC, RCHO, NOx and PM pollutants for
Fortaleza and FMA, according to our approach. The flex fuel vehicle fleet has been shifty increasing and therefore we compare our
estimations of emissions with those of the Nacional emission inventory (MMA, 2013), as shown in Fig. 5.

The differences are on the order of 13–40% which is commonly found in such validation procedures. The research from Zhou et al.
(2014) shows deviations up to 40%, from using municipal districts data to predict overall National emissions inventory. This was
confirmed in Réquia et al. (2016) when applying the same methodology to Brazil (without distinguishing between gasoline or alcohol
for the light and utility vehicles).

The average age of the road vehicle fleet (An) is a factor that strongly influences both the intensity of use of the fleet and the
emission factors, since they are directly related to the characteristics of the vehicles (CETESB, 2016; Cook et al., 2006; D’Avignon
et al., 2010; Jing et al., 2016; Shibuya et al., 2015; Souza et al., 2013). The older fleets are those of cars and light commercials that
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Fig. 4. Percentage differences from CETESB values for a PROCONVE L6 car.

Table 3
Total road vehicle emissions for Fortaleza and FMA in 2010 and 2015.

Year Fortaleza (ton) FMA (ton)

CO NMHC NOx PM RCHO CO NMHC NOx PM RCHO

2010 53,92 6,35 12,999 596 196 9,978 1,212 2,396 107 31
2015 60,93 7,228 12,288 495 249 11,933 1,517 2,748 109 42
Change (%) 13.0 13.9 −5.5 −17.1 27.0 19.6 25.1 14.7 1.9 36.7
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run on ethanol (> 20 years old) and most of the new fleets are flex fuel (< 5 years old) vehicles. According to Shibuya et al. (2015),
the age profile of Brazilian fleets in 2014 was: flex fuel vehicles were on average age 4 years old, gasoline vehicles were around
13 years old, and ethanol vehicles were in the 23 year old category. The fleets of Fortaleza and FMA are quite similar with the profile
of the Brazilian fleet, with a general average age of 12 years old.

In general, in 2015, Fortaleza and FMA (5 towns) emitted more than 70,000 tons of CO, 8000 tons of NMHC, 15,000 tons of NOx,
600 tons of PM and 290 tons of RCHO. Fortaleza emitted the most, contributing with values above 80% for all pollutants. Carbon
monoxide (CO) was the pollutant with the highest emissions in the studied region, which is in agreement with the literature for other
regions in Brazil (Souza et al., 2013; Tang et al., 2016; Ueda and Tomaz, 2011). Additionally, emission patterns by vehicle category
and fuel can be seen in Fig. 6.

Table 4 presents some studies using the same method as the present research by base year, accordingly. The largest contributions
of CO and NOx emissions are due to gasoline and diesel fuels, respectively.

Analyzing the estimated vehicle emissions (Fig. 6), by vehicle category and fuel type we have:

(i) The gasoline passenger cars category was responsible for the largest emissions of CO in 2010 (∼30%) in Fortaleza, while in the
FMA, this category of vehicles and gasoline motorcycles contributed the same percentage. In Fortaleza, ethanol passenger cars
stood out as they produced more than 30% of the CO emissions. The increase in emissions from this fleet, despite the 5.5%
reduction in the number of vehicles, is due to the increase in the average age from 23 to 28 years old in the towns studied. The
same was observed in 2015, the average age of the gasoline passenger cars fleet is much older than that of gasoline motorcycles,
contributing to increase CO in FMA.

(ii) Gasoline vehicles emit the most NMHC emissions in Fortaleza and FMA, and especially the gasoline motorcycles that accounted
for the highest emissions, both in 2010 (35%) and in 2015 (31%), as reported in studies by Tang et al. (2016).

(iii) The NOx emissions increased by more than 20% for Otto cycle vehicles in 2015 (with the fleet increase), while these pollutants
reduced by more than 10% for Diesel cycle vehicles, as a result of a more retributive legislation in the country and, consequently,
the use of exhaust gas aftertreatment technologies for these engines. Approximately 50% and 60% of the NOx emissions originate
from the trucks and buses that circulate in the Fortaleza and FMA, respectively, in 2015. These values are similar to those found
by Souza et al. (2013) and Tang et al. (2016).

(iv) The largest reductions were observed in PM emissions (> 15%) between 2010 and 2015 in Fortaleza (Table 3). As with NOx,
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N.A. Policarpo et al. Transportation Research Part D 58 (2018) 172–185

179



2010 2011 2012 2013 2014 2015
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
C

O
 (t

on
/v

eh
ic

le
s)

Year

2010 2011 2012 2013 2014 2015
Year

2010 2011 2012 2013 2014 2015
Year

2010 2011 2012 2013 2014 2015
Year

2010 2011 2012 2013 2014 2015
Year

 Gasoline light-duty
 Ethanol light-duty
 Gasoline flex fuel
 Ethanol flex fuel
 Diesel light-duty
 Diesel buses
 Diesel heavy-duty trucks
 Gasoline motorcycles
 Gasoline flex fuel motorcycles
 Ethanol flex fuel motorcycles

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

N
M

H
C

 (t
on

/v
eh

ic
le

s)

 Gasoline light-duty
 Ethanol light-duty
 Gasoline flex fuel
 Ethanol flex fuel
 Diesel light-duty
 Diesel buses
 Diesel heavy-duty trucks
 Gasoline motorcycles
 Gasoline flex fuel motorcycles
 Ethanol flex fuel motorcycles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
O

x 
(to

n/
ve

hi
cl

es
)

 Gasoline light-duty
 Ethanol light-duty
 Gasoline flex fuel
 Ethanol flex fuel
 Diesel light-duty
 Diesel buses
 Diesel heavy-duty trucks
 Gasoline motorcycles
 Gasoline flex fuel motorcycles
 Ethanol flex fuel motorcycles

0.0
2.0x10-3
4.0x10-3
6.0x10-3
8.0x10-3
1.0x10-2
1.2x10-2
1.4x10-2
1.6x10-2
1.8x10-2
2.0x10-2
2.2x10-2
2.4x10-2
2.6x10-2
2.8x10-2

PM
 (t

on
/v

eh
ic

le
s)

 Gasoline light-duty
 Ethanol light-duty
 Gasoline flex fuel
 Ethanol flex fuel
 Diesel light-duty
 Diesel buses
 Diesel heavy-duty trucks
 Gasoline motorcycles
 Gasoline flex fuel motorcycles
 Ethanol flex fuel motorcycles

0.0

2.0x10-3

4.0x10-3

6.0x10-3

8.0x10-3

1.0x10-2

1.2x10-2

R
C

H
O

 (t
on

/v
eh

ic
le

s)

 Gasoline light-duty
 Ethanol light-duty
 Gasoline flex fuel
 Ethanol flex fuel
 Diesel light-duty
 Diesel buses
 Diesel heavy-duty trucks
 Gasoline motorcycles
 Gasoline flex fuel motorcycles
 Ethanol flex fuel motorcycles

Fig. 6. Vehicular emissions by vehicle category and fuel for FMA between 2010 and 2015: CO, NMHC, NOx, PM and RCHO.

Table 4
Per capita road vehicle emissions for some different regions in Brazil and worldwide.

Regions Reference Year CO NMHC RCHO NOx PM

(ton/1000person)

FMA* This research 2015 21.2 2.50 0.09 4.40 0.20
SPa CETESB (2016) 2015 3.00 0.40 0.01 1.20 0.03
RJb Souza et al. (2013) 2010 5.30 1.00 0.02 3.00 0.05
PAc Teixeira et al. (2008) 2004 13.2 15.8 0.13 23.0 1.60
China Tang et al. (2016) 2010 24.2 – – 4.00 –
MCMAd Hernández-Moreno and Mugica-Álvarez (2013) 2010 98.0 – – 8.10 –

2015 109.0 – – 9.30 –

* Including Fortaleza City.
a SP – state of São Paulo.
b RJ – state of Rio de Janeiro.
c PA –Porto Alegre City.
d MCMA – Mexico City’s Metropolitan Area.
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trucks and buses were the main sources of PM (∼55% of total emissions in the period studied) in Fortaleza and FMA, and Diesel
cycle vehicles were responsible for 89.0% of the total emissions in 2010 and 86.0% in 2015. Concerning inhalable PM, Rocha
et al. (2016) monitored the air quality of three areas in the city of Fortaleza and stated that the greater PM concentration was
related to higher traffic of Diesel vehicles in neighborhood. The authors registered a Diesel vehicle flow of about three vehicles
per minute.

(v) Gasoline motorcycles were responsible for 11% of PM emissions in 2015 in Fortaleza, more than buses (∼7%). Pacheco et al.
(2017) drew attention to this fact and the need to implement PM emission limits for motorcycles, which so far do not exist in
Brazil since PROMOT only controls the emissions of CO, NMHC, and NOx from these vehicles.

(vi) The aldehydes pollutants directly reflect the expressive increase in the fleet of flex fuel vehicles that run on hydrated ethanol
and/or gasoline, the latter fuel in Brazil also has a current average percentage of 27% of anhydrous ethanol in its composition
(Dominutti et al., 2016; EPE, 2016). Ethanol vehicles (cars and light commercials) emitted more than 70% of the RCHO pol-
lutants only in 2015, in both Fortaleza and FMA.

The reductions in road vehicle emissions are also due to the strict control of PROCONVE over the years, and is reflected in the
gradual reduction of emission factors, such as PM (−14%) and NOx (−10%) for the period, as well as the initiatives of local
environmental agencies to inspect diesel vehicles.

In overall terms, gasoline vehicles emit the most carbon monoxide (CO) and non-methane hydrocarbons (NMHC), while ethanol
vehicles emit the most aldehydes (RCHO) and diesel vehicles emit the nitrogen oxides (NOx) and particulate matter (PM). These
conclusions are also seen in the works of CETESB (2016), Cooper et al. (2014), Pacheco et al. (2017), Souza et al. (2013), Tang et al.
(2016) and Ueda and Tomaz (2011).

The Otto cycle vehicles predominate in both Fortaleza and FMA. On average, they made up more than 90% of the total fleet
between the years 2010 and 2015, and this was strongly supported with the introduction of flex fuel vehicles. These engines emit high
amounts of CO, NMHC, and RCHO into the atmosphere when compared to Diesel cycle engines. Between 2014 and 2015, con-
sumption of hydrated ethanol increased substantially (38.2% in Fortaleza and 57% in Ceará) when compared to gasoline con-
sumption, which declined 5.5% in Fortaleza and 1.3% in Ceará. However, as can be seen in Fig. 3, gasoline consumption was much
higher than hydrated ethanol. The reduction of emissions in recent years also results from the introduction of aftertreatment systems
for the exhaust gases (Aguiar et al., 2015; Oliveira et al., 2011; Cassiano et al., 2016).

Total diesel consumption, as well as gasoline consumption, declined from 2014 to 2015 (see Fig. 3) contributing to the reduction
of atmospheric pollutant emissions. One interesting fact is that diesel consumption in Ceará was lower than that of gasoline, while
diesel consumption in the capital exceeds that of gasoline. The probable cause of this is the strong presence of diesel vehicles in
Fortaleza (especially buses and trucks), while in the rest of the state there is a very significant fleet of motorcycles, increasing gasoline
consumption.

In 2015, the total fleet of heavy-duty diesel trucks in Fortaleza and the FMA towns studied (Caucaia, Eusébio, Maracanaú,
Maranguape and Pacajus) was more than 5000 vehicles, of which Fortaleza alone accounted for 78% of this fleet. Only 16% of this
fleet was fitted with SCR-NOx systems as of 2012 (ICCT, 2016). This fact reflects directly on the reduction of NOx and PM emissions
for this category.

To have some guidance on how much could be the future emissions moving forward with different fleet growth scenarios, Fig. 7
was drawn, for Fortaleza city. It shows two hypothetical scenarios where the flex fuel vehicles fed by E100 raises 4%/year, stagnating
the BRT buses (“what if scenario #1”) and other stagnating the light-duty vehicles and doubling the BRT service (“what if scenario
#2”).

As we can see, both scenarios guarantee similar levels of PM, NOx and RCHO. If we look to the mobility capacity: usually the light-
duty vehicles take one person which means an increase of the mobility for 102,000 people; the BRT capacity is 85 passengers which
means an increase of the mobility for 680,000 people. Given this it would be advisable to promote policies that seed mode turnover.

4. Conclusion

In this paper, pollutant emission estimates of CO, NMHC, NOx, PM, and RCHO from the main categories of road vehicles powered
with gasoline, hydrated ethanol, gasoline-ethanol blends, and diesel were calculated using a macrosimulation, bottom-up method,
including EPA and laboratory data emission factors. This inventory was based on a five-year period in the city of Fortaleza and its
Metropolitan Area (FMA), and it refers to the first road vehicle emission inventory of the state of Ceará. Otto cycle vehicles were the
largest emitters of CO, NMHC and RCHO, the latter emitted mainly by vehicles running only on hydrated ethanol; while Diesel cycle
vehicles are the main responsible for NOx and PM emissions.

In general, the CO, NMHC, and RCHO emissions increased from 2010 to 2015, while NOx and PM emissions decreased in both
Fortaleza and FMA. The largest reductions were recorded for PM (∼17%) in Fortaleza. The Diesel cycle vehicle emission reduction is
largely due to increasingly restrictive legislation over the years, such as PROCONVE and PROMOT (Euro V vehicles sold since 2012).
Ethanol as a largely used biofuel in Brazil is causing the aldehydes (RCHO) emissions to increase steeply. This may be a major hurdle
regarding air quality. The flex fuel vehicles running on 100% ethanol decreased in 2013 and 2014 due to fuel prices, but the
minimum ethanol present in gasoline (the so called gasohol) has been increasing from 20 to 27% by volume.

The validation procedure consisted on comparing the emission factors with on-board real measurements where we found flex fuel
vehicle real driving differences in the range of −40% to 630%. Also we acknowledge this is an expensive and time-consuming
procedure but gives insights on real driving deviations from dynamometer tests which can be useful to air quality assessments.
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National inventory scaled to the number of vehicles was compared against Fortaleza metropolitan area results. A typical deviation
between 13 and 40% was found, as common to other development countries efforts to produce emission inventories, e.g. China.

The “what if” scenarios tried to investigate weather policies to increase the flex fuel vehicle fleet fed by E100 or policies to
increase the BRT public transport system are preferable. It is quite interesting to notice that both “what if” scenarios will be ac-
countable for similar PM, NOx and RCHO levels.
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