
STATE UNIVERSITY OF CEARA

SCIENCE AND TECHNOLOGY CENTER

COMPUTER SCIENCE POSTGRADUATE PROGRAM

ACADEMIC MASTER IN COMPUTER SCIENCE

LUCAS VIEIRA ALVES

DRES-ML: A DOMAIN-SPECIFIC LANGUAGE FOR MODELLING EXCEPTIONAL

SCENARIOS AND SELF-ADAPTIVE BEHAVIOURS FOR DRONE-BASED

APPLICATIONS

FORTALEZA – CEARÁ

2021

LUCAS VIEIRA ALVES

DRES-ML: A DOMAIN-SPECIFIC LANGUAGE FOR MODELLING EXCEPTIONAL

SCENARIOS AND SELF-ADAPTIVE BEHAVIOURS FOR DRONE-BASED

APPLICATIONS

Dissertation presented to the Academic
Master in Computer Science Course of the
Computer Science Postgraduate Program
of the Science and Technology Center of
the State University of Ceara, as a partial
requirement to obtain the title of Master in
Computer Science. Concentration Area:
Computer Science
Supervisor: Prof. Paulo Henrique Mendes
Maia, PhD

FORTALEZA – CEARÁ

2021

Universidade Estadual do Ceará
Dados Internacionais de Catalogação na Publicação

Sistema de Bibliotecas

Alves, Lucas Vieira.
 DRES-ML: a Domain-specific Language for
Modelling Exceptional Scenarios and Self-adaptive
Behaviours for Drone-based Applications [recurso
eletrônico] / Lucas Vieira Alves. - 2021.
 97 f. : il.

 Trabalho de conclusão de curso (GRADUAÇÃO) -
Universidade Estadual do Ceará, Centro de Ciências
e Tecnologia, Curso de Ciência da Computacão,
Fortaleza, 2021.
 Orientação: Prof. Dr. I. Título.

LUCAS VIEIRA ALVES

DRES-ML: A DOMAIN-SPECIFIC LANGUAGE FOR MODELLING EXCEPTIONAL

SCENARIOS AND SELF-ADAPTIVE BEHAVIOURS FOR DRONE-BASED

APPLICATIONS

Dissertation presented to the Academic
Master in Computer Science Course of the
Computer Science Postgraduate Program
of the Science and Technology Center of
the State University of Ceara, as a partial
requirement to obtain the title of Master in
Computer Science. Concentration Area:
Computer Science

Approved in:

EXAMINATION BOARD

Prof. Paulo Henrique Mendes Maia, PhD (Supervisor)
State University of Ceará – UECE

Prof. Dr. Mariela Inês Cortês
State University of Ceará – UECE

Prof. Dr. João Bosco Ferreira Filho
Federal University of Ceará – UFC

FreeText
25/02/2021

Stamp

To my family, for their ability to believe in

me and invest in me. Mother, your care and

dedication gave you, in some moments, the

hope to continue. Father, your presence

meant security and certainty that I am not

alone on this journey.

ACKNOWLEDGEMENTS

First of all to God who allowed all this to happen, throughout my life, and not only in

these years as a university student, but who at all times is the greatest teacher anyone

can know.

To my parents, for their love, encouragement and unconditional support.

Thank you my brothers and nephews, who in the moments of my absence dedicated to

higher education, always understood that the future is made from the constant dedication

in the present!

To this university, its teaching staff, management and administration that provided the

window that I now see a superior horizon, surrounded by the strong confidence in merit

and ethics present here.

I thank all the teachers for providing me with not only rational knowledge, but also the

manifestation of the character and affectivity of education in the professional training

process, for so much that they dedicated themselves to me, not only because they

taught me, but because they made me learn . the word master, will never do justice to

the dedicated teachers to whom without naming they will have my eternal thanks.

“ It’s really good to go to the fight with de-

termination, embrace life with passion, lose

with class and win boldly, because the tri-

umph belongs to those who dare ... Life is

too much to be insignificant ”
Charles Chaplin

ABSTRACT

Os drones estão ganhando atenção devido à possibilidade de suportar diversos tipos

de aplicações, como busca e resgate, vigilância e entrega de mercadorias. Como

podem operar em diferentes ambientes, é possível encontrar incertezas e situações

excepcionais, não previstas inicialmente, durante o uso de aplicativos baseados em

drones. Nesse domínio, estratégias auto-adaptativas têm sido usadas com sucesso

para garantir resiliência e execução contínua de tais aplicativos, apesar das mudanças

no ambiente. Embora algumas abordagens tenham proposto o uso de notações de

cenário, como Message Sequence Charts, ou linguagens de especificação de compor-

tamento formal, como LTS, para modelar as situações excepcionais, elas são muito

genéricas ou exigem um bom conhecimento dos métodos formais do usuário, que pode

dificultar sua adoção. Além disso, eles também requerem um conhecimento profundo

dos detalhes técnicos para implementar os mecanismos auto-adaptativos. Para mitigar

esses problemas, este trabalho propõe uma linguagem de domínio específico, de-

nominada DRES-ML, que permite modelar situações excepcionais e comportamentos

auto-adaptativos para aplicações baseadas em drones. Ele se baseia no estrutura

Dado-Quando-Então, usado na técnica de desenvolvimento orientado por comporta-

mento (BDD) e nos principais conceitos de Programação orientada a aspectos. Também

fornecemos um mecanismo de transformação de modelo em texto que traduz auto-

maticamente os cenários excepcionais modelados em uma plataforma específica para

drones, a fim de verificar os comportamentos adaptativos. A abordagem é avaliada

por meio de prova de conceito que verifica a aplicabilidade em diferentes cenarios

excepcionais.

Palavras-chave: Drones cenários excepcionais. Linguagem de modelagem. Sistemas

auto-adaptativos. Programação orientada a aspectos

Free Hand

Stamp

Stamp

ABSTRACT

Drones are gaining attention due to its possibility to support wide different types of

applications, such search-and-rescue, surveillance and goods delivery. Since they can

operate in different environments, it is possible to encounter uncertainties and excep-

tional situations, not initially predicted, during the use of drone-based applications. In this

realm, self-adaptive strategies have been successfully used to guarantee resilience and

continuous execution of such applications despite environment changes. Although some

approaches have proposed the use of scenario notations, such as Message Sequence

Charts, or formal behaviour specification languages, like LTS, to model exceptionalal

situations, they are either very generic or demands a good knowledge on formal meth-

ods from the user, which may hinder their adoption. Moreover, they also require a deep

understanding in technical details in order to implement the self-adaptive mechanisms.

To mitigate those problems, this work proposes a domain-specific language, called

DRES-ML, which allows modelling exceptional situations and self-adaptive behaviours

for drone-based applications. It relies on the Given-When-Then template used in the

Behaviour-driven development (BDD) technique and the main Aspect-oriented Program-

ming concepts. We also provide a model-to-text transformation engine that automatically

translates the modelled exceptional scenarios to a drone-specific platform in order to

verify the adaptive behaviours. The approach is evaluated through a proof of concept

that verifies its applicability in different exceptional scenarios.

Keywords: Drones exceptional scenarios. Modeling language. Self-adaptive systems.

Aspect-oriented programming

LIST OF FIGURES

Figure 1 – The MAPE-K reference model . 21

Figure 2 – Aspect-oriented programming concepts 24

Figure 3 – Modelling Process overview . 31

Figure 4 – Scenarios for the drone delivery system 33

Figure 5 – Example of an modelled exceptional scenario 35

Figure 6 – Domain resources . 36

Figure 7 – Metamodel of the DRES-ML . 40

Figure 8 – Metamodel of Exceptional Scenario 41

Figure 9 – Metamodel of When clause . 43

Figure 10 – Metamodel of Then clause . 44

Figure 11 – Template for exceptional scenario in the DRES-ML 47

Figure 12 – Autocomplete menu in the DRES Modeling Environment 48

Figure 13 – Move Aside exceptional scenario using DRES-ML 49

Figure 14 – ModelToText process . 50

Figure 15 – Screenshot of the Dragonfly simulation tool 53

Figure 16 – Simulation of the monitored environment. 56

Figure 17 – Scenarios of example application . 56

Figure 18 – Keep flying exceptional scenario modeling with DRES-ML 57

Figure 19 – Switch to Manual exceptional scenario modeling with DRES-ML . . 59

Figure 20 – SafeRTH exceptional scenario modeling with DRES-ML 60

Figure 21 – Necessary adaptation movements 61

Figure 22 – MonitorEnvironment exceptional scenario modeling with DRES-ML . 62

Figure 23 – EmergencyCamera exceptional scenario modeling with DRES-ML . 63

Figure 24 – Correlation between DRES-ML and AOP structures. 64

Figure 25 – AST and TextGen scripts for Move Aside exceptional scenario 65

Figure 26 – Generated move aside wrapper. 66

Figure 27 – Generated Keep flying wrapper . 67

Figure 28 – Generated SafeRTH Wrapper . 68

Figure 29 – Generated SwitchToManual Wrapper 69

Figure 30 – Generated MonitorEnvironment Wrapper 69

Figure 31 – Generated EmergencyCamera Wrapper 70

LIST OF ABBREVIATIONS AND ACRONYMS

AOP Aspect-Oriented Development

API Application Programming Interface

BDD Behavior-Driven Development

DSL Domain-Specific Language

GPL General Purpose Language

GPS Global Positioning System

MDD Model-Driven Development

SaS Self-Adaptive System

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

CONTENTS

1 INTRODUCTION ... 14

2 OBJECTIVES .. 17

2.1 General Objectives .. 17

2.2 Specific Objectives .. 17

3 OVERVIEW ... 18

4 BACKGROUND .. 19

4.1 Unmanned Aerial Vehicle ... 19

4.2 Self-Adaptive System .. 20

4.3 Domain-Specific Languages ... 21

4.4 Aspect-oriented Programming ... 23

5 RELATED WORK .. 26

5.1 Self-adaptive Approaches For Drones ... 26

5.2 Domain-specific Language Approaches For Self-adaptive System 27

5.3 Modelling Language Approaches For Drones 29

5.4 Summary .. 30

6 THE DRES MODELLING LANGUAGE ... 31

6.1 DRES-ML Overview ... 32

6.2 Domain Analysis .. 35

6.3 Abstract Syntax ... 39

6.4 DRES-ML Modeling Environment ... 46

6.5 Model To Text - Code Generation Process .. 49

7 EVALUATION ... 52

7.1 The Dragonfly Tool .. 52

7.1.1 Interface ... 52

7.1.2 Execution of flight simulation ... 54

7.1.3 Tool extension flow .. 54

7.2 Proof Of Concept ... 55

7.2.1 Motivating Example ... 55

7.2.1.1 Exceptional Scenarios Specification ... 57

7.2.1.1.1 KeepFlying ... 57

7.2.1.1.2 SwitchToManual .. 58

7.2.1.1.3 SafeRTH .. 59

7.2.1.1.4 MonitorEnvironment... 60

7.2.1.1.5 EmergencyCamera .. 62

7.2.1.2 Wrapper Generator .. 63

8 CONCLUSION AND FUTURE WORKS .. 71

8.1 Achievements .. 72

8.2 Limitations ... 72

8.3 Future Work ... 72

BIBLIOGRAPHY ... 74

APPENDIX .. 80

APPENDIX A – ABSTRACT SYNTAX RESOURCES 81

14

1 INTRODUCTION

Unmanned aerial vehicles (UAVs), most popularly known as drones, have

been used for military purposes for several years (CONCEPT. . . , 2015). In military

applications, drones are considered an essential element of the battlefield, since they

capture different kinds of information on a large scale in terms of time and space (e.g.

surveillance and intelligence recognition) (WANG et al., 2019).

Recent technological advances and miniaturization have enable the use of

drones in several civil applications, such as protection of agricultural products (PERERA

et al., 2019), search and rescue (SILVAGNI et al., 2017) (RAHMES et al., 2018), delivery

and monitoring of goods (ROBERGE et al., 2018), weather and natural disasters

monitoring (CECIL, 2018) (ERDELJ; NATALIZIO, 2016) construction monitoring (HAM

et al., 2016) and traffic surveillance (NIU et al., 2018). Currently, drones are also being

used to help containing the global pandemic of the COVID-19 in different ways. For

instance, Police in Spain and Chine1 are using drones equipped with speakers to tell

the people in the streets to only go outside when it is strictly necessary and to remain at

home, while French authorities2 are using drones to find out (and tax) people that are

leaving home to go to unnecessary places, such as beaches.

Although drones can be directly controlled via a remote control by a pilot,

more advanced drones have pre-planned behaviours that reduce the need of a human

intervention, thus increasing the level of automation. An autonomous drone selects

actions from a fixed palette following a static decision process based on its immediate

state, environment, and goals (MOD, 2011). Take-off, landing and flying between way

points are examples of drone’s automatic operations (CULLEN et al., 2017).

However, there are lots of uncertainties that cannot not initially be predicted

at design time that generate exceptional situations during the use of drone-based

applications (MAIA et al., 2019b). To tackle that, there are two possibilities: on the one

hand, there is the creation of custom-made drones for specific situations (e.g., a tailored

drone has been built for delivering an organ to a hospital in the USA in 2019 3). This is
1 https://www.forbes.com/sites/zakdoffman/2020/03/16/coronavirus-spy-drones-hit-

europe-police-surveillance-enforces-new-covid-19-lockdowns/#238c14e47471
https://globalnews.ca/news/6535353/china-coronavirus-drones-quarantine/

2 https://www.businessinsider.com/coronavirus-drones-france-covid-19-epidemic-pandemic-outbreak-
virus-containment-2020-3

3 https://www.nytimes.com/2019/04/30/health/drone-delivers-kidney.html

15

very costly, time consuming, and usually non-reusable for other situations, thus making

this option unfeasible or very restrictive. On the other hand, drones could expand their

degree of autonomy through self-adaptive capabilities to deal with dynamic or unknown

environments, contextual changes and system failures that may appear during the flight.

In this realm, self-adaptive systems have the ability to adjust its behaviours or structures

at runtime without (or with minimised) human intervention through adaptations triggered

by the changes in the environment or by the software requirements, capabilities or goals

(OREIZY et al., 1999).

Some work proposes self-adaptation approaches for drone-based applica-

tions (GOMES et al., 2017; YU et al., 2019). However, those work focus on proposing

solutions at the level of non-functional requirements and architecture. Those solutions

aim at adapting the system configuration, changing the component structure and opera-

tional parameters, thus ensuring that the operation in progress is not interrupted or the

system’s non-functional aspects are improved, such as data-intensive computing, and

distributed execution and scalability (BRABERMAN et al., 2015). Therefore, specifying

both exceptional scenarios and adaptive behaviors for drone-based applications is still

a challenge.

In this direction, Maia et al. (2019) have proposed a cautious adaptation

approach that supports changes in the behaviour of defiant components4 in order to

satisfy global requirements in exceptional situations. The approach relies on using

Message Sequence Charts (MSC) (HAREL; THIAGARAJAN, 2003) to specify both

normal and exceptional scenarios and wrappers, implemented using Aspect-oriented

Programming (AOP) (KICZALES; HILSDALE, 2001), to apply the adaptation behaviour.

Although the authors used a drone-based example in the paper, the use of

a generic scenario modelling notation, such as the MSC, may limit the description of

more specific scenarios for a particular domain, since some important information may

not be properly represented. When modelling exceptional scenarios for drones, some

peculiarities have to be taken into account, like: (i) resources (e.g. sensors, actuators

and internal components); (ii) environmental conditions (e.g. wind power and direction);

and (iii) policy regulations (e.g. the drone has to be in the visual line-of-sight (VLOS) of
4 A defiant component is a participating components a system-of-systems that has been designed to

satisfy predefined requirements, and not necessarily intended to change its behaviour in order to
support global requirements of the system-of-systems

16

the pilots). An exception scenario that involves some of those elements may be very

difficult to model using only MSCs.

Moreover, in (MAIA et al., 2019a), exception scenarios were modelled with

the purpose of formally identifying defiant components in a system-of-systems (SoS)

context (via scenario transformation into a labelled transition system and model checking

techniques). However, exceptional scenarios for drones may arise in applications that

not necessarily contain defiant components or are part of a SoS. Nonetheless, the

cautious adaptation approach requires that the adaptive behaviour should be specified

directly in a wrapper implemented using AOP. Thus, the user should have a good

knowledge not only in the MSC modelling notation, but also in the technical solution

using AOP.

To tackle those problems, this work proposes the DRES-ML (Drone Exceptional

Scenario Modelling Language), a domain-specific language (DSL) to model exceptional

scenarios and self-adaptive behaviours for drone-based applications that provides a

high level abstraction of the main available drone resources and environment variables.

This benefits the modeller (domain expert) by reducing the complexity of specifying both

the exceptional scenarios and the corresponding behavioural adaptation strategies and

by enabling the modelling of more possible situations. The DSL syntax is built upon con-

cepts from both the Behavior-driven Development (BDD) (NORTH et al., 2006), which

allows the specification of exceptional scenarios by using the worldwide well-known

Given-When-Then structure, and the Aspect-oriented programming (AOP) (KICZALES;

HILSDALE, 2001), which allows the represent the drone main features as joinpoints and

adaptation strategies as Before/After/Around in advice clauses (NORTH et al., 2006).

Furthermore, it was provided a model-to-text (M2T) transformation engine that take

as input a DRES specification file and generates a wrapper to the Dragonfly simula-

tor (MAIA et al., 2019b), thus allowing the user to verify whether the self-adaptation

behaviour executes correctly. Similarly to (Maia et al., 2019) , DRES-ML also relies

on AOP. However, while in the former the user must know how to program using an

aspect-oriented language, in this work (s)he only needs to understands some AOP

concepts, specially, join point and advices, for specifying the self-adaptive behavior

specification.

17

2 OBJECTIVES

2.1 GENERAL OBJECTIVES

The main objective of this work is to develop a domain-specific language

to support software engineers in modeling exceptional scenarios and self-adaptive

behaviours in the domain of drones.

2.2 SPECIFIC OBJECTIVES

To achieve the general objective, it is necessary:

• To identify the main elements related to the drone domain;

• To design the language abstract and concrete syntax;

• To design a modeling tool for this domain-specific language;

• To implement an engine that can transform DRES-ML scripts into a drone simulator

tool;

• To conduct a concept proof to validate the approach.

18

3 OVERVIEW

The remainder of the dissertation is divided as follows: Chapter 2 presents

the background that supports the work. Chapter 3 discusses the main related work.

Chapter 4 details the proposed DSL and modeling environment, and transformation

approach. Chapter 5 describes the evaluation process and main results. Finally, chapter

6 draws the main conclusions and future work.

19

4 BACKGROUND

This chapter presents main the concepts that are important for understanding

the work, such as Unmanned Aerial Vehicle (UAV), Self-Adaptive System (SaS), Domain-

Specific Language (DSL), Aspect-Oriented Development (AOP) and Behavior-Driven

Development (BDD).

4.1 UNMANNED AERIAL VEHICLE

Unmanned aerial vehicles (UAV), a.k.a. drones, have been used in many

new applications in improving people’s way of life with the on-going miniaturization of

sensors and processors and pervasive wireless networking. There are many drone

technology uses, ranging from on-demand delivery services to monitoring of traffic and

wildlife, infrastructure inspection, search and rescue, agriculture, and cinematography

(GHARIBI et al., 2016).

However, due to the heterogeneity and dynamism of the environments in

which a UAV acts, there has been a need for autonomous management capacity. Thus,

if a fault occurs, the UAV has conditions to take corrective actions automatically. To do

this, it must be able to communicate with its controller and to return payload data such

as images from cameras, and its primary state information - geographic position, speed

and altitude. It also transmits information as its own conditions that covers aspects such

as the battery percentage, current temperature, and sensor and actuator conditions.

Thus, due to the ability to communicate with a ground-based controller, and

to perform monitoring and actions in the physical environment allows framing a drone

as a component that belongs to the cyber-physical system (CPS), which is a system

composed by heterogeneous components that interact with a physical environment and

with other computational or physical components to achieve a goal (ROMANOVSKY;

ISHIKAWA, 2016).

Different mission requirements need the creation of different UAVs, then there

are a lot of categories of UAVs in regards to their mission capabilities such as HTOL

(horizontal take-off landing), VTOL (vertical take-off landing), hybrid model (tilt-wing),

etc. The first one has the propulsion systems at the rear or at front of the fuselage and

usually has flying wing. The second one often uses a vertical propulsion system at the

20

front of its fuselage and have cross wings. This type of drone does not need the runway

to take off because it can take off and land vertically. In addition, these drones have

good performance compared to HTOL, however it has limitations with cruise speed

in long distance missions. At, last but not least, that drone is a combination of the

capabilities of the other aforementioned types, therefore it has the ability to perform

both long-distance missions and vertical take-off landing (HASSANALIAN; ABDELKEFI,

2017).

4.2 SELF-ADAPTIVE SYSTEM

Recently, there has been a lot of effort invested to allow systems to self-

manage themselves in order to decrease total the cost for controlling a complex software

systems (Ganek; Corbi, 2003). Then, a self-adaptive system (SaS) works autonomously,

with minimal or no human interactions. A SaS provide some properties (SALEHIE;

TAHVILDARI, 2009), such as self-configuration, self-healing, self-optimization and self-

protection. Thus, that given the ability at run-time to detect, build and apply adaptations

in reaction to changing conditions in order to achieve some objective (AHMAD, 2010).

These systems are often based on Feedback Control Loops (FCL) or Closed

Control Loop mechanisms for self-adaptation (Ganek; Corbi, 2003). The control loop

structure is composed of three phases: monitoring, decision-making, and reconfigura-

tion. Monitoring inspects the state of the target system and its environment; Decision-

making uses information from last phase to decide what actions should be taken to get

a desired state; and reconfiguration executes the decided changes in the application.

FCL is supported by the sensor (probes) and effector (actuators) interfaces. The first

one is a software or hardware component responsible for collecting information about

the drone internal state, state of the target component or environment state. Effectors

are also software or hardware components that operate on the target system to enable

self-adaptation.

The MAPE-K (Monitor, Analyze, Plan, Execute, over a Knowledge base)

control loop (KEPHART; CHESS, 2003) is the most common FCL architecture to devise

self-adaptive software systems (CALINESCU et al., 2017). Typically, the system is di-

vided into two subsystems (Figure 1):(i) the autonomic manager subsystem (adaptation

engine) and (ii) the managed subsystem (adaptable system). The former represents

21

Figure 1 – The MAPE-K reference model

Source – Prepared by the author

the controller and implements the management mechanisms for self-adaptation, while

the latter, represents the target system that is accessed through the sensor and effector

interface.

In addition, the autonomic manager subsystem consists of four components

organized around a common Knowledge component representing the management flow

data. The Monitor component provides resources to collect, organize and filter data

through sensors. The Analyser component analyses the collected data from the previous

component and is able to relate to the data stored in the knowledge component, thus

allowing an autonomic manager. The Planning component provides the mechanisms to

perform the required adaptations. Finally, the Executor component applies the plan built

from the previous component through effectors.

4.3 DOMAIN-SPECIFIC LANGUAGES

The Model-Driven Development (MDD) approach is very related to the notion

of domain-specific languages (DSL)(GROHER; VOELTER, 2009). Then in MDD, devel-

22

opers work with high-level abstraction and can generate target code using model-to-text

transformations.

A Domain-specific language (DSL) is a language with high-level abstraction

for a particular domain that permits users to create models based on their domain

knowledge and removing complexity from deployment. DSLs can improve productivity,

understating, and maintenance of codes (BROY et al., 2012).

There are two main types of DSLs: internal (often called an embedded DSL)

and external. The former can be defined as a coding of APIs inside an existing general-

purpose language (GPL) that are more expressive for a specific domain, thus allowing

an understanding from an expert in the domain to developers bringing the idea of a

ubiquitous language (GHOSH, 2010). One well-known internal DSL is Rails, which is

implemented on top of the Ruby programming language. The latter has its own syntax

and semantics, thus bringing a set of techniques for lexical analysis, parsing techniques,

interpretation, compilation, and code generation (GHOSH, 2010). Popular examples of

external DSLs are the HTML language, designed to represent the layout of web pages,

and the SQL language for querying and updating relational databases.

Besides, execution engine and target platform are two essential concepts for

a DSL. The target platform is the operating system or environment in which the program

needs to be executed. The execution engine can be changed and bridges the gap

between the language and the target platform. It can be either an interpreter or compiler.

An interpreter is a program that runs on the target platform and whose function is to

load a program and act on it. A compiler transforms a program into an artifact (often a

source code for a GPL) that can run directly on the target platform.

According to Voelter et al. (2013), every language, be it domain-specific or

not, is composed of the following properties:

• Abstract Syntax: it is the data structure that holds the semantic information

expressed by the program. It is typically a tree or a graph and does not contain

any details about the notation, such as keywords, symbols, or blanks;

• Concrete Syntax: defines the notation with which users can express programs. It

can be textual, graphical, tabular, or a combination of these;

• Static Semantics: it is the set of restrictions or typing rules that must conform to

the programs (which must also be structurally correct); and

23

• Execution Semantics: refers to the program’s behavior once it is executed. It is

performed by the execution engine.

The development process can be facilitated through the use of a language

development system (Language Developing System) or a toolkit. The tools can range

from a consistency checker and interpreter to an integrated development environment

(IDE), which consists of an editor with a syntax marker, formatter, consistency checker,

analysis tools, interpreter or application compiler / generator and debuggers code if the

DSL is executable (the other benefits also apply if the DSL is non-executable).

Despite a large number of systems for language development, the term

workbench language has been used by several researchers. Language workbenches

are software engineering tools that facilitate the implementation of new languages and

associated tools (IDEs, debuggers, consoles, etc.) (ERDWEG et al., 2015).

This term was popularized by Martin Fowler (FOWLER, 2005). According to

Fowler, a DSL that uses a language workbench should have three aspects:

• A Schema, which is an abstract syntax of the language;

• An Editor, which represents a graphical or textual representation of the abstract

syntax and concede the user to manipulate the abstract syntax tree through

projections;

• A Generator, which translate the abstract syntax into a low-level abstract exe-

cutable representation.

Jetbrains Meta Programming System (MPS) is a well-known language work-

bench example. MPS is an open-source framework that provides the tools, from

Jetbrains, to design both domain-specific and general-purpose languages (CAMPAGNE,

2014). MPS does not need grammar or parser. Instead, editions in to the program

change the abstract syntax tree directly, projected as text. Consequently, MPS sup-

ports mixed notations (textual, symbolic, tabular, and graphic) and many compositional

characteristics.

4.4 ASPECT-ORIENTED PROGRAMMING

Crosscutting concerns are concerns that cut across other concerns, thus

generating a system that is difficult to maintain and evolve (MOREIRA, 2005). Thereby

the Aspect-oriented programming (AOP) aims to encapsulate crosscutting concerns in

24

separate modules, called Aspects. There are many languages to implements aspect

modules: AspectJ (KICZALES et al., 2001b), AspectC (KICZALES; COADY, 2001),

AspectC++ (SPINCZYK et al., 2002), among others. Those languages provide mecha-

nisms for weaving aspects and base code as cohesive structure.

Aspect codes can be interact with base code through the join points. These

points could be a method called, an exception thrown, or even an attribute changed.

Pointcut defines at what joinpoints the aspects should be associated. Often a pointcut

is specified using regular expressions that represent a method signature. In addition,

it is possible to use a conditional to define a conditional pointcut expression that will

be evaluated at runtime for each candidate join point. An Advice is the implementation

of an aspect that includes API invocations to the base system representing the set

of action to execute at a joinpoint specified by a pointcut (KICZALES et al., 2001a).

In addition, there are different types of advice: "around," "before" and "after" advice.

The first one surrounds a join point, such as a method invocation. That is the most

powerful kind of advice. The around advice can perform custom behavior before and

after the method invocation. The second one executes before a join point but cannot

prevent execution flow from proceeding to the join point. The last one is the advice to

be executed after a join point completes normally.

Figure 2 – Aspect-oriented programming concepts

Source – Prepared by the author

Figure 2 visually represents the interaction of aspect-oriented programming

concepts. As can be seen, there are candidate join points (larger rectangles) in the

program execution of the application where an aspect can be plugged in. Smaller

rectangles represent pointcut that optionally expose some of the values in the execution

context of that join point. And finally, associated with the pointcut, there is the advice

25

implemented with the aspect code.

26

5 RELATED WORK

This section discusses the main related work in the areas associate with the

contributions of this dissertation. Initially, studies that propose self-adaptive approaches

in the domain of drones are presented. Then, proposals of domain-specific languages

for self-adaptive systems are shown and, subsequently, DSLs for drones.

5.1 SELF-ADAPTIVE APPROACHES FOR DRONES

Maia et al. (2019) proposed the cautious adaptation approach for defiant

components in a system-of-systems (SoS) (MAIER, 1998) environment. A component is

defiant if it cannot be adapted to meet both individual (its own) and global requirements.

The approach specifies normal and exceptional conditions through scenarios modeled

as Message Sequence Charts (MSC) and implements the adaptation behavior in

exceptional situations using wrappers based on the aspect-oriented paradigm. That

work is motivated by exceptional situations that occur in a drone-based application,

more specifically on organ delivery between hospitals. However, as the wrappers are

implemented with join points, it is necessary that the developers have deep knowledge

on an AOP language and the signature of some internal application methods.

Yu et al. (2019) proposed LiveBox, a self-adaptive distributed architecture to

enable drones forensic-readiness and regulation compliance requirements to support

the investigation of an eventual incident in a drone application. In order to limit the

transfer rate, it provides self-adaptation activities through the MAPE-K feedback loop

for dynamically reducing flight data accuracy without sacrificing run time verification

accuracy. Although the LiveBox is directly related to the drone domain and uses self-

adaptation techniques, it is specialized in forensic-readiness requirements. On the other

hand, this work has another purpose of adapting the behavior of drones at runtime.

Due to limitations imposed by the environment, battery capacity, and move-

ment space, it is not always possible to find an optimal path that satisfies all objectives

and deal with privacy restrictions. To fill that gap, Luo et al. (2020) proposed a self-

adaptive online path planner and reconfiguration of privacy-sensitive sensors (example,

camera) to satisfy motion security, task completion, and privacy requirements. The

privacy conditions and the necessary adaptations can be compared to the exceptional

27

scenarios of this dissertation’s approach.

Gomes et al. (2017) proposed an unmanned aerial systems of systems

architecture that performs self-control to respond to situations that impact the flight

capabilities. That architecture includes components that perform maintenance and

diagnostics tasks that coordinate and monitor the drone activities, thus making it possible

to achieve an interconnected system that can address several issues and solutions

related to flight autonomously. The work of Gomes et al. (2017) brings great architectural

contributions that assisted in the definition of the DSL proposed in this work. However,

this approach goes beyond the architectural level and proposes mechanisms that make

self-adaptation of behavior itself.

Zhang et al. (2020) used self-organized swarm drones to monitor ships to

detect pirate attacks. The drones are represented by agents that use pheromone path

marks to plan optimizing monitoring coverage. In order to solve the path optimization,

a heuristic depth-first branch and bound search (H-DFBnBS) algorithm is intended.

This approach focuses on adaptations in various drone devices such as sensors and

actuators, not only makes adaptations related to drone movement.

5.2 DOMAIN-SPECIFIC LANGUAGE APPROACHES FOR SELF-ADAPTIVE SYS-

TEM

Baresi et al. (2008) outlined an architecture, configured by special-purpose

languages and aspect-oriented techniques, for the formation of component-based of

decentralized self-adaptive systems. The architecture has supervised (sensors and

actuators that execute the business logic) and supervisor (that monitors and decides for

adaptation strategies) components. Each component implements a control loop that

comprises event collection (collects and builds a finite sequences of events), analysis

(checks whether these sequences satisfy a set of properties), and reaction (if there are

property violations, this step indices new behaviors in components). The control loop is

performed by Aspect-oriented techniques. Supervisors exploit the specific language

to recognize patterns of events received from the elements in their clusters and trigger

adaptation in the supervised elements. The language is a mix of XML technologies,

such as XPath for recovery data, along with typical boolean, relational, and arithmetic

operators. Similarly to the work of Baresi et al. (2008), this approach also uses the

28

concept of aspect to make local and global adaptations. However, the DRES-ML focus

on the adaptation of drones.

Jahan et al. (2018) proposed adaptations to local objectives for the multi-

agents to achieve the general objectives of the systems. In addition, to model the

specifications of local and global missions, it uses the Partial-Order, Causal-Link (POCL),

a formal representation that uses temporal and spatial constraints. It defined flaws

as adaptation triggers so that each agent can self-integrate into another agents’ plan

to achieve the global mission goal. In the proposal of this dissertation, the defined

language triggers and specifies the necessary adaptation.

Vogel et al. (2012) presented a modeling language for runtime megamodels

that describes adaptation logic and an interpreter that executes them. In addition, those

megamodels can specify multiple feedback loops specialized in different concerns. In

this approach, a runtime model was not used to represent adaptive behavior.

Shetty et al. (2004) presented a domain-specific graphical language to

define adaptive behaviors in fault scenarios for a large-scale system whose users are

physicists. In addition, that approach has the ability to synthesize low-level programming

implementations from the defined language. On the other hand, the DRES language

specifies exceptional situations through a textual language.

Arcaini et al. (2019) described a pattern-oriented framework that uses the

MSL (MAPE Specification Language) for designing self-adaptive systems. MSL models

can be automatically translated in OpenHAB control rules that provide an implementation

of architectural solutions in the context of home automation. The DSL proposed in this

dissertation handles behavioral adaptations in exceptional scenarios. Futhermore, it

also has mechanisms to translate that language into other output languages.

Chhetri et al. (2018) presented a Java-embedded DSL (ADSL) that enables

the specification of components, and their relationship and constraints in the context

of cyber resilience. The specifications achieve a distributed self-management in ac-

cordance with a model@runtime. The authors use a language to specify architectural

components.

Alvares et al. (2015) defined a DSL named Ctrl-F to descried architectural

adaptations and constraints in the context of software components. In addition, it

provides a translation to a reactive language (Finite State Automata - FSA) allowing

29

program behavior verification, thus ensuring that policies are not violated.

Kounev et al. (2018) proposed an approach that employs Descartes Modeling

Language (DML) for modeling the self-adaptive performance and resource management

of service infrastructure in heterogeneous environments. That language captures the

properties of the system that are relevant for performance analysis and can be used

to guide adaptations in the system. While DML focuses on specifying architectural

adaptations for Quality-of-Service (QoS), the DRES-ML addresses behavior adaptation

of drones.

Křikava (2013) provides a model to specify feedback control loop-based

architectures through an internal domain-specific language in Scala (ODERSKY et al.,

2004) programming language for EMF (Eclipse Modeling Framework)(STEINBERG et

al., 2008). In addition, it is presented a set of mechanisms for model-transformation and

verification and an associated tool support for modeling.

The studies cited above (CHHETRI et al., 2018; ALVARES et al., 2015;

KOUNEV et al., 2018; KŘIKAV, 2013) deal with domain specific languages for self-

adaptive system. However, they do not bring a specific language focused on adaptive

behaviors for exceptional situations.

5.3 MODELLING LANGUAGE APPROACHES FOR DRONES

Hoppe et al. (2019) proposed a framework, named DronOs, that enables

users to prototype personalized routies and behaviors of drones through three interaction

types: Unity Scripting, Vive Scripting, and Vive Realtime. The first modality utilizes

the Unity user interface for the detailed definition of routines through a drag-and-drop

mechanism. The second one is a programming-by-demonstration approach that, with

the use of a controller that takes the position of the user’s hand, configures the drone’s

flight path. Lastly, the user controls the drone directly by pointing with a hand controller

to the final target. Those modalities facilitate the use of drones by both experts and

non-experts and the programming interfaces are enabled only for making the planning

and modification of flight routines. Moreover, the proposed approach requires the use of

specific hardware components to do track and enable the drone to carry out commands.

Differently, this approach requires no hard components.

Da Silva et al. (2018) conducted a Systematic Literature Review investigating

30

how the Unified Modeling Language (UML) has been used to create Domain-Specific

Modeling Languages (DSMLs) that provide support for SaSs modeling. As a result, 15

primary studies published between 2005 and 2017 were selected and reveals that the

UML has been tailored through the profile-based mechanism to provide adequate sup-

port to analysis and design of the context-awareness and self-adaptiveness properties.

Bozhinoski et al. (2015) presented FLYAQ, a tool that enables end-users

with no technical skills to define graphical description of a mission for a drone team

through a DSL named Monitoring Mission Language (MML), which can be translated

to an intermediate language named QBL. That language generates a detailed flight

plan, which includes preventing collisions, respecting no-fly zones and unexpected

behaviors. DRES-ML provides more mechanisms to control and monitors a drone and

its environment, thus enabling more possible behaviors.

Costiou et al. (2016) designed a context-oriented of drone language, called

Lub, that addresses the problem of behavioral adaptation temporarily at runtime when

unexpected events come from their environment. In addition, it includes a parser and

a compiler to generate code for classes and methods defined with Lub. However, not

all features described have been implemented yet. In contrast, this work provides

both a DSL and an editor tool that allow user to model exceptional scenarios and their

respective adaptation behaviors.

5.4 SUMMARY

In this chapter, the works related to this research were presented. To identify

such works, searches were performed in the main research sources for approaches

that Self-adaptive approaches for drones, Domain-specific language approaches for

Self-adaptive system, and Modeling language approaches for drones. At the end of

each related work, comparisons are presented with the approach proposed in this

dissertation. Next chapter gives an overview of the proposed approach.

31

6 THE DRES MODELLING LANGUAGE

This chapter presents the proposed domain-specific language for specifying

exceptional scenarios and self-adaptive behaviours for drone-based applications. The

main user of the DSL is the expert in the drone domain, i.e., the person who understands

how a drone works, including its main features (take off, manoeuvre, landing, among

others), sensors (e.g, GPS, gyroscope), and resources (e.g. camera), as well as the

main environment conditions that may impact the drone’s fly (wind, rain, ...), and how

the drone should behave in those scenarios, in a given application.

Figure 3 provides an overview of the modelling process using DRES-ML.

Initially, the domain expert identifies the possible exceptional scenarios regarding the

drone-based application and the adaptive behaviour strategies for each one. This step

is out of the context of this work and may be carried out using a specific methodology

(like the one shown in the cautious adaptation approach (MAIA et al., 2019a)) or in an

informal way.

After that, the domain expert will specify the exceptional scenarios and the

self-adaptive behaviours using the high-level abstractions provided by the DRES-ML,

which is described in details in Section 4.1. Finally, the user can export the modelled

scenarios for the Dragonfly drone simulator (MAIA et al., 2019b), where (s)he can

validate the self-adaptive behaviour. The Dragonfly has been chosen since it allows the

implementation of the self-adaptive behaviour of drones through the use of aspect-based

wrappers and provides the necessary drone resources and environment variables used

in the scenarios. However, it is possible to implement transformation engines for other

specific drone platforms if they provide the scenario elements used in the DSL and

make available artefacts that support the adaptive behaviours.

Figure 3 – Modelling Process overview

Source – Prepared by the author

32

6.1 DRES-ML OVERVIEW

The DRES-ML provides high level abstractions to specify both exceptional

scenarios and self-adaptive behaviours for drone-based applications, thus reducing

the effort from the domain expert on modelling such situations. To do that, the DSL

uses BDD and AOP concepts to represent scenarios and the introduced behaviours,

respectively, using a notation closer to the user natural language.

To describe the exceptional scenarios in this DSL, the Given-When-Then

structure was used. The first clause (Given) represents the state of the drone context,

i.e., a set of information that the drone can sense or request from either its internal

resources/components (e.g battery, GPS, or camera) or external sources (e.g. weather

condition from a web service).

The When clause represents the occurrence of a specific drone event or

action, such as take off, landing, manoeuvre, among others, that should execute in a

normal scenario if the expressions in the Given clause are satisfied. Finally, the Then

clause is used for describing the self-adaptive behaviour that will be applied when the

exceptional scenario occurs.

To specify the self-adaptive behaviour, the DRES-ML uses the concepts of

advices from AOP: before, after, and around. This means that the new behaviour will be

executed before, after or overlap the current drone expected behaviour, respectively,

when the drone action that is in the When clause is triggered.

The structure of the DRES-ML supports self-adaption by following the MAPE

(Monitor, Analysis, Planning and Execution) (KEPHART; CHESS, 2003) control loop.

The Given and When clauses provide both the elements that need to monitored, such as

the drone internal state, sensor and actuator status, among others (monitoring phase)

and the expressions that are analyzed (analysis phase) and have to be satisfied to trigger

an adaptation, such as checking environment conditions and detecting malfunction of

sensors or actuators.

The planning phase corresponds to the new behaviours specified by domain

specialist in the Then clause (set of commands that the drone should perform). Finally,

the execution phase regards how the adaptive behaviour is implemented, based on

recommendations from the previous phase, either in a simulator or a specific drone

platform, using aspect weaving, dependency injection, or other code strategy.

33

To give an example on how modelling exceptional scenarios using the DRES-

ML, it is used an excerpt of the same scenario shown in (MAIA et al., 2019a), in which

the drone was used to deliver an organ from one hospital to another (as in the Maryland

case). Figure 4 shows the scenarios specification of the drone delivery system using

the Message Sequence Chart notation.

Figure 4 – Scenarios for the drone delivery system

Source – Prepared by the author

Full boxes represent the drone’s standard specification. It was assumed that

the drone can monitor its battery (b), the target distance (d), wind conditions and verify

the type of geographical region it is flying over (water or land), either using internal

sensors or accessing external information provided by web services, for instance. It

is also assumed that the drone has a predefined function that calls a safe landing

procedure when its battery reaches a critical limit, in this case 10%.

However, in a critical mission, like delivering a valuable payload (for instance,

blood bags or an organ), the drone has to satisfy two main global requirements:

• R1: the drone must take the payload organ from the sender hospital to the receiver

hospital.

• R2: in the case when the payload cannot be delivered, the drone should not lose

it.

Given that, and following the process depicted in Figure 3, it was identified

that an exceptional scenario may happen when the drone’s battery reaches 10%, i.e., it

34

should perform a safe landing, but it is flying over water (e.g, a river or the sea) and it

would not manage to arrive at the destination due to the distance from the target hospital

and the weak wind conditions. This would make the drone to break R2 since, by landing

on water, the payload would be lost. In Figure 4, the exceptional scenario, called Move

Aside and represented by a dashed box, should take place when the transition guard

conditions are true instead of the normal behaviour Safe Landing. After executing the

exceptional scenario, i.e., when the drone is manoeuvred to fly over a land region, the

expected behaviour may happen.

This description of the exceptional scenario corresponds to the first step of

the phase 1 of the proposed modelling approach (exceptional scenario identification).

Now the exceptional scenario using the DRES-ML (step 2) can be specified.

Figure 13 depicts the exceptional scenario modelled using DRES-ML. Firstly,

it is necessary to define a name for the scenario, which is Move aside. After, it is defined

the state of the drone context for the exceptional scenario to be valid in the clause Given.

More specifically, the exceptional scenario happens when the drone: (i) is flying over

a water region (the drone‘s distance from a water region); (ii) its battery reaches the

critical limit of 10%; (iii) the wind is not strong; (iv) and the drone is at least 2000 m away

from the target.

Note that, at this moment, the domain expert is interested in specifying the

conditions that apply for the exceptional scenario regardless how the information will be

acquired (e.g, how to know that the drone is above water). This will be translated to a

drone platform or simulator by a technology expert in the M2T phase (Section 4.3).

As previously mentioned, due to the local requirement of the drone, the safe

land command will be invoked when the battery level drops to 10%, which is one of

the conditions of the Given clause. This triggers the When clause of the scenario

specification of Figure 13.

Finally, following the specification of the Then clause, the self-adaptive be-

haviour must occur before the execution of the safe landing command, since the advice

Before has been used. In this case, the drone verifies whether it is still over water and,

if so, it moves aside. This is performed until it gets over the land. After the adaptive

behaviour has been finished, then the safe landing command is executed.

35

Figure 5 – Example of an modelled exceptional scenario

Source – Prepared by the author

6.2 DOMAIN ANALYSIS

To increase the expressiveness of the language, it is necessary to encap-

sulate the knowledge about the target domain. Therefore, the domain analysis phase

should be part of the process of developing a domain-specific language (VOELTER et

al., 2013). To identify and understand the concepts and properties of the domain ad-

dressed in this work, it was gathered and analyzed the main productions found in drone

context, such as simulation tools, specific application programming interfaces (APIs),

and functioning of hardware components. Thus relevant knowledge was extracted and

defined in abstract concepts that base the specific language. These concepts are called

resources and they are presented in Figure 6.

The resources are a group of abstractions of domain elements that together

assume the role of telemetry, flight control, sensor, and actuator. It was composed of

three principal components namely the Control, Sensors and Actuators.

The Control component combines high-level resources from the remote and

built-in smart control and internal state information to realize navigation operations. The

Control component was divided in sub-components responsible for managing specific

activities: Drone, Mission, RTH, SafeLand, Landing, TakeOff, EmergencyStopMode,

Fight and EmergencySanvingMode. The Drone sub-component deals with operations

directly associated with the drone movement,which may be in terms of direction ma-

neuver, current position, distance from a position, rotation, speed, acceleration and

altitude.

• Maneuver is specified by cardinal directions (such as, north, east, south and west)

or direction to a specific region (for example, origin and destination);

• Current position indicates the current geographical position of the drone collected

by the GPS (latitude and longitude);

36

Figure 6 – Domain resources

Source – Prepared by the author

• Distance between the current position of the drone and a given position (drone to

regions, obstacles, pre-established points or GPS coordinates);

• Rotation is represented in degrees in principal axes (vertical axis (yaw), transverse

axis (pitch) and longitudinal axis (roll));

• Acceleration and speed mode can be automatic or manual, and acceleration

and speed level indicates the rate of change applied to the respective physical

measure;

• Altitude, also collected by GPS, meaning the height of the drone in relation to the

sea level.

Resources that have only status have been grouped, as seen in Figure 6.

Takeoff and Landing resources represent operations for drone take off and landing,

respectively. The Safeland resource deals with an operation to force landing in situations

that may be considered dangerous for the drone (for instance, low level battery, hard-

37

ware/software errors or GPS failure). Finally, EmergencyStopMode resource manages

operation to disarm the motors if the drone has a critical error during the flight. The

other resources are associated mainly with automatic high-level operations that can

have configurable attributes and status, which represents the current situation of the

drone operation.

The Mission resource models an automate flight. It exposes waypoints, a

set of coordinates of interest (three-dimensional position) that the drone will fly to, and

status, which indicates the situation of the mission. The RTH resource represents

the execution of the return to home operation. It is a very useful safety feature that

helps bringing the drone back to a safe, accessible landing location (Home Point).

Therefore, this resource has an attribute to represent the home point and another one

that determines the situation of this operation (status).

The EnergySavingMode resource sets battery level thresholds, which should

trigger warnings to the pilot or to pre-defined operations (for instance, safe landing and

RTH). Flight wrappers switch management to manual or automatic flight mode. The

former is possible via remote controller to manipulate limited features of the flight, while

the latter is performed through high-level flight automation via the Mission resource. Both

resources have the status attribute representing the current status of each operation.

The Sensor component is responsible for telemetry and monitoring activities

supporting the component Control. Some common sensors in drones are accelerome-

ters, gyroscope, magnetic compass and barometer. The accelerometer measures the

acceleration force that the drone is subjected to in all three axis X, Y and Z. Besides,

it is also used to estimate linear acceleration in horizontal and vertical direction. This

data can be used to calculate speed and direction. The Gyroscope detects angular

velocity in three axis, thus calculates angle in pitch, roll and yaw. It controls the speed

dynamically to provide stability to the drone and to also ensure that the drone rotates at

the exact expected angle. The Compass provides information of magnetic field and then

detects geographical direction. Magnetic material can create variables in the sensor

reading, thus calibration operations can be used to deal with possible interference and

avoid accidents. The Barometer converts atmospheric pressure into altitude, thereby it

helps to achieve the desired altitude. The IMU represents the inertial measurement unit

sensor, which measures linear and angular velocity and attitude using data from other

38

sensors, such as accelerometer, gyroscope and sometimes magnetometers. That unit

works when the GPS is unavailable, such as inside buildings or during electronic inter-

ference. The resources that represent those sensors were grouped and represented,

as shown in Figure 6, and they contain a status attribute to provide the current status of

the respective sensor.

The ObstacleAvoidance resource deals with the sensor that detects objects

near the drone. The Global Positioning System (GPS) resource is used to determine the

ground position of the drone. Both resources have result and status attributes. The first

one represents the detection or not of an object and the other one represents strength

of the GPS signal, respectively. The latter (status attribute) represent internal state of

each sensor.

Weather sensing is an important key in decision making on a flight plan

since it provides information about wind conditions. The Anemometer resource handles

the sensor that measures wind speed and direction, and provides information about

the anemometer state. The Thermometer resource wrappers the sensor that collects

external temperature and also gives thermometer status.

Hygrometer and SmokeDetector are resources that handle sensors for more

specific applications. The former deals with the sensor used to measure relative humidity

(humidity attribute), which is the amount of vapor in the air compared to the maximum

amount possible. The latter manages the sensor that detects smoke (result attribute),

indicating fire in the vicinity. Both features have a status attribute to display the status of

each sensor.

Drones have limited battery capabilities, therefore it is important to monitor

and to ensure that they consume low power. The Battery resource provides information

about the capacity, voltage, electrical current, actual percentage and status of battery

battery.

The Actuador component wrappers devices that convert energy into me-

chanical movement in order to iterate the drone with the environment. Camera and

gimbal devices allow effective and flexible aerial imaging missions for a wide range of

applications. The former captures photos and videos, while the latter supports cam-

era stabilization allowing the camera to remain horizontal regardless of the motion

performed. The Camera resource exposes the cameras action and status. It has a

39

focus point attribute that allows the camera to fix the focus in a geographic position and

automatically remain it during the flight. In addition, this resource has a status attribute

that gives the current status of the device. The Gimbal resource treats gimbal motion

control through rotation (rotation angle), axis (axis that the rotation is being applied)

and control (whether operations are automatic or manual). This resource has a status

attribute.

The Light resource provides accesses information about on-board lights.

Usually, lights are necessary to minimize the chance of collisions, mainly during a

night flight. The Landing gear device prevents the drone from touching the ground

when landing or taking off, as well as the gimbal/camera. Furthermore it absorbs the

landing shock on any sudden landings. The Payload resource expresses the device

that provides package/payload delivery.

6.3 ABSTRACT SYNTAX

The abstract syntax is the specification of the language grammar and, thus,

defines all valid sentences of that language (BRAMBILLA et al., 2017). Usually, the

abstract syntax is represented by the metamodels, which are normally based on object-

oriented models, such as classes, attributes and associations. Figure 7 provides a

visualization of the high-level specification of the elements of the DRES-ML syntax using

UML class diagrams. These elements are based on the resources listed in the domain

analysis presented in last section and represent a set of abstractions to express a model

for drone exceptional scenarios.

To reduce the size of the metamodel illustrated in Figure 7, boxes group

elements containing common relationships. For example, inside the dashed resources

box, there is another dashed box that contains elements from the acceleration resource

to the temperature level resource (see Figure 7), this box represents a common relation-

ship with integer value, i.e., to model these expressions it is necessary to use an integer

value. In addition, also inheritance elements are omitted, such as enumerators of status,

results, events, and actions (they are detailed later). Thus, detail of the elements of the

abstract syntax can be found in Table 1 in appendix A and in an public spreadsheet1.
1 https://cutt.ly/fjw07ws

40

Figure 7 – Metamodel of the DRES-ML

Source – Prepared by the author

41

For the exceptional scenario (ExceptionalScenario) specification using DRES-

ML, it is required to define a Given-When-Then structure provided by the BDD technique.

In addition, it is required to define a name for the modeled exceptional scenario. This

attribute is used as an unique identifier to differentiate exceptional scenarios. Figure 8

shows a snippet of the DRES-ML metamodel focusing on exceptional scenarios.

The Given concept expresses the context states including the drone re-

sources and the environments through conditional expressions (ConditionalExpression

concept). The essential characteristic of a conditional expression is that its result

produces a binary value (true or false). In addition, it has concepts that assist in the

construction of conditional expressions: ConditionalResource and LogicalExpression

concepts.

Figure 8 – Metamodel of Exceptional Scenario

Source – Prepared by the author

The ConditionalResource concept takes as a basis the domain analysis,

summarized in the previous session, to create conditional expression representing

specific drone resources and environmental conditions. Those concepts represent

information that can be obtained from monitored components, i.e, drone on-board

equipments (e.g. sensors) or any external sources from which the drone may obtain

information (e.g. control tower or web services), information on the status of operations

and actuators. These conditional resources enable to formulate conditional expressions

using the obtained information. They allow comparative operators “==" and “6="; “>","<",

42

“<=" “>=", specified by EqualityEnum and InequalityEnum enumeration2, respectively,

and GeneralEnum enumeration incorporating all operators, as shown in Figure 8. Finally,

conditional expressions contains compared values, which are enumeration, such as

StatusEnum and ResultEnum, and integer values. The StatusEnum manifests the

internal state or status monitored by the resource concepts, while the ResultEnum

represents a monitored outcome produced by resources. The conditional expressions

for resources are disposed in the dashed box, labeled Resource, in Figure 7.

In order to exemplify the grammar of a conditional expression of a resource,

the list 4.1-4.3 presents the BNF of anemometer resource (sensor used for measuring

wind speed and direction). This example focused on the expression that deals with the

wind speed, which can generate a condition for the Move Aside exceptional scenario

presented in Session 6.1. In addition, it is worth mentioning that in order to avoid

ambiguity in the application of operators, brackets are used in expressions (line 4.1).

〈WindSpeedCondExp〉 |= (Wind.speed 〈GeneralEnum〉 〈Value〉m/s) (6.1)

〈GeneralEnum〉 |= == | 6= | > | < | ≤ | ≥ (6.2)

〈Value〉 |= {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9} (6.3)

In the BNF below, it was exemplified conditional expression grammar that

represents the anemometer resource with the attribute status. The pre-defined val-

ues of status are indicated by the derivation of the StatusEnum, more specifically, the

AnemometerStatusEnum. It represents the status for the described resource enabling,

such as, ACTIVATE, DEACTIVATE, and ERROR as possible values. "(Anemome-

ter.status == ERROR)" is an example of conditional expression produced through that

syntax.

〈AnemometerStatusCondExp〉 |= (Anemometer.status 〈EqualityEnum〉 〈AnemometerStatusEnum〉) (6.4)

〈EqualityEnum〉 |= == | 6= (6.5)

〈AnemometerStatusEnum〉 |= ACTIVATED | DEACTIVATED | ERROR (6.6)

The LogicalExpression concept has three attributes (shown in Figure 8): left

- it is the same type as the parent concept, and represents the clause on the left side of
2 Enumeration concepts are sequence of pre-established keywords for each specific concept.

43

an operator in an conditional expression; operator - it is an element type that represents

logical operators in an conditional expression, such as “and” and “or” (specified by the

LogicalOperator enumeration); and right - it is also same type as the parent element,

and represents the clause on the right side of the operator in an conditional expression.

It is worth mentioning that concept enables the use of combined logical and resource

expressions, giving the possibility of more complex expressions.

The When concept defines an event that is being invoked, more specifically,

an action/command of a resource that is being executed. These events are executed

through commands performed by the remote controller, pre-defined operations (for

example, missions) or any other flight control command source. These events are called

to control/managing actuators and sensors present in the drone.

The EventResource concepts specifies events to a type of resource. It is

complemented with a set of predefined values that can specify the type of event through

the EventEnum element, as seen in Figure 9. These values are mapped in the domain

analysis phase which presents a range of event that a drone resource can execute.

Figure 9 – Metamodel of When clause

Source – Prepared by the author

EventResource was based on the Joinpoint concept from the AOP paradigm.

Whenever the drone executes the event specified in the When clause, the adaptive

behavior modeled in the Then element is performed, which means that events serve

as a trigger for adaptation. A wildcard value ("*") may be required to represent the

execution of any action for an event resource.

The list below presents the grammar to specify events related to the safe

44

landing resource. The mapped ResourceEvent to the respective resource are ACTI-

VATES, DEACTIVATES, CALIBRATES or "*". That example permits to generate the

event shown in the When clause of the exceptional scenario move aside.

〈SafeLandingEvent〉 |= 〈SafeLandingEventEnum〉 SafeLanding (6.7)

〈SafeLandingEventEnum〉 |= STARTS | PAUSES | CANCELS | RESUMES | * (6.8)

The Then concept contains information on the adaptation steps required for

the exceptional scenario. It contains the AdaptativeBehavior concept that specifies

the type of adaptation that will be performed, and makes an association with the

AdaptiveScript concept that represents adaptation itself (shown in Figure 10). The idea

behind Adaptive Script is to create a "forced" sequence of command flow (sub-routine)

to represent the adaptive behavior. Through an identification (attribute name), it is

possible to realize the relationship between these two concepts. This attribute is defined

for AdaptiveScript, thus making it to be a unique identifier (signature). Then, when

the AdapitativeBehavior concept defines in its structure the identifier of an already

defined AdaptiveScript, it means that the adaptive behavior is modeled in the respective

adaptive script.

Figure 10 – Metamodel of Then clause

Source – Prepared by the author

45

Another important structure for AdaptiveBehavior is the AdaptationTypeEnum

concept. It is pre-established that adaptations are based on AOP advice concepts:

before, after and around. The before and after types have a similar behavior because

they do not replace the specified behavior in the When concept. The before implies

that the adaptive behavior will be invoked at runtime, before the predefined behavior.

This means that adaptation will be performed before the event call defined in the When

concept. The after type, in turn, invokes adaptation at runtime, after being called in

the event defined in the When concept. The around type surrounds the command call

defined in the When clause. In other words, the predefined behavior invoked by the

event specified in the When clause is replaced at runtime by the behavior modeled in

the Then concept.

The AdaptiveScript concept includes a sequence of Statement concept,

which is derived from other concepts, for instance, the CommandResource that rep-

resents commands coming from resources. These commands are entities that, when

executed, can produce an effect on the environment and the internal state of the drone.

Thus, the result of a command can be a different state from the last state modified

by the effect. Therefore, commands have the purpose of changing the state of the

resources. The ActionEnum is a high-level element created in order to represent the

possible commands for the resources. The resources that allow commands also were

included in the dashed box Resource in Figure 7.

Inside the AdaptiveScript, it is possible to define a command or sequence of

commands through CommandResource. That sequence specifies a command execution

flow in which a next command is only executed when the current command is ending.

In order to determine an alternative or conditional flows, other types of statements were

derived, such as, If, If-Else and While.

The If concept allows the specification of alternative flows. The satisfaction

of a condition (Condition concept) to allow the execution of a specific flow (specified

in the Body concept). The condition is formed by the ConditionalExpression concept

resulting in a value of true or false. The If-Else concept is an extension of the If concept.

If the result of the condition is the value true, then is executed the flow of actions in the

Body concept, otherwise the else-statement body is executed with the alternate flow.

The While concept allows the repetition of the a given flow execution (Body concept)

46

until the satisfaction of the specified condition (Condition concept).

The list below shows an example of a resource for commands. It is shown

the maneuver to a direction command resource. This resource is modeled with values

predefined cardinal directions to allow maneuvering actions for a specified direction.

This command resource composes the adaptive behavior present in the exceptional

scenario move aside.

〈DroneManeuverDirectionToRegionCommand〉 |= Drone.direction 〈DirectionEnum〉 (6.9)

〈DirectionEnum〉 |= NORTH | EAST | ... | SOUTH_WEST (6.10)

6.4 DRES-ML MODELING ENVIRONMENT

In this session, the technology and resources used to implement the modeling

environment for the DRES-ML are explained. In addition, an example of an exceptional

scenario modeled using the environment is presented.

The implementation of DRES-ML was based on the Jetbrains Meta Program-

ming System (MPS)3. The MPS is an open-source project that provides the tools to

design domain-specific and general-purpose languages (CAMPAGNE, 2014). It is a

well known example of language workbeanches, which are software engineering tools

that ease the implemention of new languages and associated tools (IDEs, debuggers,

consoles, etc.) (ERDWEG et al., 2015).

The Editor concept is an important aspect used in a DSL based on a language

workbench according to Martin Fowler (FOWLER, 2005). It represents a graphical or

textual representation of the abstract syntax and allow the user to manipulate the

Abstract Syntax Tree (AST) through projections (VOELTER et al., 2013). Software

engineers can modify the AST directly when editing a program4, thus that process does

not involve parsers.

For specifying an exceptional scenario using the DRES-ML modeling envi-

ronment, it is necessary to create an exceptional scenario element5. As aforementioned,

an exceptional scenario is outlined based on the Given-When-Then structure, therefore
3 https://www.jetbrains.com/mps/
4 A program is a set of instructions for the computer using a programming language.
5 An element is a node of an AST that represents a construction in the source code of the program.

47

a template to model that structure is pre-established when creating that kind of element,

as shown in Figure 11. The <value> placeholder underlined in red represents entry

points for software engineers filling the exceptional scenario. These visual indicators

are constraints implemented in the modeling environment to prevent the engineer filling

in improperly the current node. The value in the placeholder presents an error message

containing necessary information to explain the problem. In Figure 11, error messages

are presented indicating the absence of the value of an attribute or a child node.

Figure 11 – Template for exceptional scenario in the DRES-ML

Source – Prepared by the author

As shown in Figure 12, it is possible to view enabled model elements to fill

the respective fields through the code-completion pop-up menu (Ctrl+Space). This is a

useful feature because it prevents mistakes and helps the user to correctly select the

possible elements based on their type and the grammar rules, therefore ensuring the

correctness of the modeling good based on the abstract syntax. In addition, along with

the autocomplete menu, there are examples of each model element aiming it facilitating

the understanding of the usefulness of a specific model element. After the engineer

selecting the desired element to compose the exceptional scenarios, the respective

node is shown as a template to be specified the required values through placeholders

as shown by 12.

A pattern of style and colors was designed for the elements of the nodes

(see Figure 13). Elements shown in bold style are immutable values, while elements

presented in regular style are variable values that the software engineer can input.

In the template the exceptional scenario reserves expression is shown in red, while

the Given-When-Then terms are presented in blue. The attributes colored in orange

represent the specification of the type of adaptation (before, after and around). Attributes

in green color and italic style indicate the reference scope between elements (reference

between the Then clause and the adaptation script). Finally, statement elements (if,

48

Figure 12 – Autocomplete menu in the DRES Modeling Environment

Source – Prepared by the author

while, if-else and commands) are indicated in blue. Figure 13 shows the implementation

of the Move Aside exceptional scenario presented in Session 6.1 using the DRES-ML

and its modeling environment.

To specify the conditions of the environment and the drone’s internal state for

this exceptional scenario, Relative Distance and Wind Speed conditional expressions

were associated using conjunctions (logical operator "and") inside the Given clause.

The former compares if the drone’s distance from a region/area with water is 0 meters

and if the distance from the destination region’s drone is greater than or equal to 2000

meters. The textual values that are in upper cases specify regions for conditional

expressions. These comparisons are carried out through equality operators ("=="). The

last compares if the wind speed is less than 5 meters per second using the inequality

operator ("<"). As expected, the standardization specified in the modeling environment

resource elements and their attributes is in bold as for Distance and Speed attributes of

Drone and Wind resources, respectively.

The When clause specifies the operation of initialization of the safe landing

as the trigger event. Operation, such as "starts", "pauses", "cancels," and "resumes",

are presented in upper case.

The Then clause determines "before" values for the type of adaptation and

"goLandRegion" as a reference for the adaptation script. The next is to establish adaptive

behavior through a script identified as "goLandRegion". To execute the behavior defined

in the Move Aside exceptional scenario, a While statement element uses a guard

represented by a conditional expression that compares whether the drone’s distance

to the land region is different from 0 meters, that is, the drone is not over a land

49

region. Besides, the while element’s body contains another statement that represents a

command specifying that the drone flies to a land region.

Figure 13 – Move Aside exceptional scenario using DRES-ML

Source – Prepared by the author

6.5 MODEL TO TEXT - CODE GENERATION PROCESS

The DRES-ML has been designed to be attached with different ModelToText

(M2T) generators, which means that it can generate code or scripts representing the

specified exception scenarios to distinct target platforms. This section provides an

overview about M2T generators.

A generator is a translator that maps elements of the model to elements of

another model, thus allowing the conversion between them (VOELTER et al., 2013).

This translation can be achieved by either a model-to-model transformation, generating

a new model as output, or a model-to-text transformation, generating text or source

code as output. A target platform is where the generated code has to run on at the end

of the process, then it needs to be "platform understandable". It is common to assume

that there are several target platforms, therefore each target platform has to have a

specific generator.

Figure 14 depicts the three phases of the code generation generic process.

The first phase addresses the specification at the exceptional scenario using the DRES

modeling environment. The second phase, it is required the use of the created generator

that allows translation of program encoded in the DRES language into constructions

encoded in the output language. There are several appropriate languages for defin-

ing transformations that can be used for defining mapping in terms of a rule-based

50

Figure 14 – ModelToText process

Source – Prepared by the author

templates, such as Acceleo6, TextGen7 and Xtext 8. They have placeholders that are

applied on the elements in the produced model code. For example, the TextGen is

a mechanism proposed by MPS JetBrains that executes transformation processes

(CAMPAGNE, 2014), enabling the creation of generators. It contains templates to print

out text, to transform elements from AST (the artifacts accessed directly by the modeling

environment) of the program written with DRES-ML into text values and gives the output

with a layout.

Model interpretation is another transformation process that the output code

does not generate directly from the model (BRAMBILLA et al., 2017), such as ANTLR9.

Then, a generic generator is implemented that performs a model parser on-the-fly with

an interpretation approach (the same way that interpreters do to interpret programming

languages). This process analyzes string of symbols or data structures, conforming

to the rules of a defined grammar. The parser process is made possible by exporting

artifacts in either XML (Extensible Markup Language) or even text by the DRES-ML

environment.

The benefits of this approach is that it does not depend on transformation

tools avoiding the learning required to use them. For example, TextGen and Acceleo

are restrict to jetBrains and Eclipse IDEs, respectively, and requires knowledge of its

language to implement the generators. Moreover, it is worth mentioning that, to create a

generator, an expert is required. Who should know the syntax elements of the DRES-ML
6 https://www.eclipse.org/acceleo/
7 https://www.jetbrains.com/help/mps/textgen.html
8 https://www.eclipse.org/Xtext/
9 https://www.antlr.org/

51

and the language and API used in the target platform to be able to make an appropriate

transformation process.

The last phase consists of generating the code artifact that should be added

to be executed in the target platform. It is common to assume that there are several target

platforms, therefore the execution generator can be switched to a new target platform.

However, the model-to-code process may not be smart enough to generate a complete

output code directly executed in a specific target platform. Nevertheless, the software

engineer can still benefit from a generation approach by creating a partial implementation

of the system, thus completing the code manually to obtain the full functionality on the

platform. Another point to be highlighted is that the target platform must be able to

perform adaptive behaviors at runtime. To do that, it can use mechanisms such as

dependency injection (FOWLER, 2004), plugin-based approaches (WERMELINGER;

YU, 2008), design patterns (GAMMA, 1995) or Aspect-oriented programming (AOP)

(KICZALES; HILSDALE, 2001).

52

7 EVALUATION

The main goal of this work is to create a language and an environment for

modelling exceptional scenarios available for different drone situations. This chapter

presents an evaluation with a focus on analyzing the applicability of DRES-ML to a

variety of possible exceptional scenarios in a given application and their execution on a

target drone simulator platform.

7.1 THE DRAGONFLY TOOL

Dragonfly simulator is an open source and extensible Java tool available at

GitHub 1. It supports creating environments for simulating the behaviour of a set of

drones in drone-based applications. In this section, it is described a overview the of

Dragonfly.

7.1.1 Interface

Figure 15 shows the interface of the Dragonfly tool. As shown in the figure,

the interface is divided into four main panels, namely: graphical elements panel (1),

drone flight environment panel (2), drone properties panel (3), and trace log panel (4).

In Figure 15 each panel is expanded for better visualisation.

The graphical element panel (1) provides a set of graphical elements that

can be used to represent different environments of various applications. The current

version provides elements to represent rivers, hospitals, communication antennas, and

drones. Other elements can be easily added to the tool and is part of a future extension

of Dragonfly.

The user can insert the graphical elements in the drone flight environment

panel (2), which is used to create the environment in which the tool will simulate drones

in an application. This panel consists of a grid layout in which each cell can contain one

or more graphical elements.

The example in Figure 15 illustrates an environment with two hospitals: one

on the far left and the other one on the far right, representing origin an destination of a

flight. The pathway of this scenario consists of a river. The environment also has two
1 https://github.com/DragonflyDrone/Dragonfly

53

Figure 15 – Screenshot of the Dragonfly simulation tool

Source – Prepared by the author

communication antennas to simulate the emission of signals that may interfere with the

journey of the drones. There are four drones flying in the environment: one drone (a)

with its original specifications (i.e., without having any wrapper), and three drones ((b),

(c), and (d)) weaved with wrappers representing different adaptive behaviours in case of

exceptional situations during their respective journeys.

The drone property panel (3) allows setting of initial values of some of the

resources of the participating drones. It also associates each participating drone with

one or more wrappers representing behaviour adaptation functionalities, in case of

exceptional situations. Examples of initial resource values are initial battery level and

battery consumption rate.

The trace log panel (4) shows the current status and activities of each

participating drone (identified by a number), during runtime simulation. An example of a

current status is concerned with a drone’s battery level, while examples of activities are

concerned with take off, fly, move aside, and land.

54

7.1.2 Execution of flight simulation

When using the simulator, the first step consists of constructing the environ-

ment of an application. In this case, the user inserts graphical elements by selecting

an element from the graphical element panel (Figure 15 (1)) and choosing a specific

position in the grid of the drone flight environment (Figure 15 (2)), where the element

should be placed.

The user needs to configure the following properties for each drone inserted

in the environment: battery consumption rate per block and per second, initial battery

level, and target element (i.e., the place to where the drone will fly). In addition, he/she

can associate a drone with an available wrapper. Afterwards, the user chooses the

mode that the drone should fly. In the case of automatic pilot mode, when the simulation

starts, the drone will execute the shortest path to reach the target destination. In the

case of user pilot mode, the user will manoeuvre the drone by using the keyboard. The

commands to manoeuvre a drone are available at the Dragonfly’s GitHub repository.

The final step consists of starting the simulation by clicking the “Start” button,

which triggers the execution of each inserted drone simultaneously. The currently

implementation of the tool supports up to 400 drones flying at the same time, with and

without wrappers. If the user has chosen to pilot the drone manually, the available

commands to be executed are: turn on/off the drone, take off, move (up, right, down,

and left), and land.

7.1.3 Tool extension flow

The current version of Dragonfly is extensible in terms of new graphical

elements to represent other environment settings and in terms of new wrappers to

represent new exceptional situations. For the creation of new graphical elements, it is

necessary to create one class in each layer of the architecture for each new element.

It is also possible to associate an image with the new element in its correspondent

view class. For creating new wrappers, it is possible to implement the behaviour in

aspect-oriented programming to represent the new exceptional situations and associate

drones with the new wrappers.

55

7.2 PROOF OF CONCEPT

7.2.1 Motivating Example

Due to the large ecological degradation resulted by forest fires that occurred

in 2020 (XU et al., 2020), an application example was elaborated using drones for

forest fire detection and monitoring. This application provides a continuous remote

recorder, geographic position and smoke detection through the drone and its sensors,

thus enabling to detect fire areas.

This supervision is intended to collect data about the evolution of fire de-

viation and to assist teams in the control of fires, thereby helping to protect to the

environment and riverside communities. Given that, the objectives of the application is

(i) to monitor fire outbreak and (ii) to minimize drone losses. The exceptional scenarios

were elaborated based on these goals. The drone will realize monitoring its resources,

such as camera, smoke detector and GPS.

The environment of the proposed drone application was created using the

Dragonfly tool and is shown in Figure 16. It illustrates a forest crossed by a river,

represented by the blue squares, and regions of land. In addition, there are houses

representing riverside communities and antennas that perform transmission and recep-

tion radio and TV signals. The drone will start at a home point that is located at the

west side of the forest (represented by a circle with a letter H inside), it will fly over the

forest following the flight plan and monitoring the environment, and it will land at the

destination point (also indicated by a circle with a letter H) in the east side of the forest.

The drone flight can be carried out either automatically or manually. In the

first one, the pilot creates the flight plan and loads it on the drone before starting the

mission, while in the other one, the pilot can control the drone manually using a remote

control. If necessary, the pilot can change the drone’s flight mode.

The drones of this application behave following the scenarios of Figure 17,

which is an extension of the example in described in Session 6.1, that uses the MSC-

based exceptional scenario representation proposed by Maia et al. (2019), combined

with new monitored variables and new scenarios. The origin distance, represented by

od, and the status of operations and sensors of a drone are new variables that are

obtained through the states of both sensors and drone. KeepFlying, SafeRTH, RTH,

56

Figure 16 – Simulation of the monitored environment.

Source – Prepared by the author

SwitchToManual, MonitorEnvironment and EmergencyCamera are the new modeled

scenarios, which are described as follows along with their corresponding specification

in the DRES-ML.

Figure 17 – Scenarios of example application

Source – Prepared by the author

57

7.2.1.1 Exceptional Scenarios Specification

7.2.1.1.1 KeepFlying

The purpose of the KeepFlying exceptional scenario is to enable the drone

to continue flying towards the destination when there are favorable conditions instead of

a safe landing operation. This situation, it is understood as favorable conditions when

the strong wind moves towards the destination location (east), and the distance to the

destination location is less than 2000 meters, enabling the drone to reach its destination.

And after this new behavior is realized, the drone can perform its predefined behavior

flow.

Figure 18 shows KeepFlying exceptional scenario specified using DRES-ML.

The conditions for triggering the adaptation should be implemented in the Given clause.

Therefore, to compose the conditions shown in Figure 17, two logical expressions were

needed using the conjunctive operator "and", enabling the implementation of three

conditional resource expressions.

Figure 18 – Keep flying exceptional scenario modeling with DRES-ML

Source – Prepared by the author

The Relative distance conditional expression is used to compere the drone’s

distance to a destination region ("DESTINATION") with a distance in meters (2000)

using a comparative operator ("less than"). To compare the wind speed, the wind speed

conditional expression is used, which also uses a comparative operator ("equal to") and

a speed value in m/s. The wind direction conditional expression allows implementing

the condition that verifies the wind direction, then it is passed an operator ("equal to")

and a direction value ("EAST").

The When clause is implemented with the safe landing start event (indicated

58

by the Safelanding scenario) to represent that the interception must be performed when

this event is invoked (see joint point 1). Note that if the exception scenario is executed,

it replaces the predefined event. Therefore, the adaptation strategy has to be of type

"around", as indicated in the When clause. In addition, this clause links to an adaptive

behavior script called "goDestination".

Finally, the adaptation script is implemented using command resources and

statements. The modeled script must perform a repetition of the command that makes

the drone to fly towards the destination region while it does not arrive at the destination.

This modeling was performed using the While statement.

The while stop condition was implemented with relative distance conditional

expression, in which the distance relative to the destination region ("DESTINATION")

is compared to 0 meters using the equality operator "not equal to". And drone while‘s

body was specified with a maneuver direction command, which makes the drone to

maneuver the flight towards the destination region ("DESTINATION").

Thus, the adaptation entitled "goDestination" collaborates with the objective

(ii) of the application, enabling the drone to reach its destination.

7.2.1.1.2 SwitchToManual

A proper operation of the GPS is necessary for the drone to follow the

controller’s flight plan since the waypoints are defined with latitude, longitude, and

altitude, the information provided by that sensor. Thus, another situation that can cause

an RTH operation is when the drone has a faulty connection to the GPS. Therefore, the

drone should be gliding for a while or even perform some random movements until a

good signal is reestablished. Based on that, the SwitchToManual scenario was defined,

causing the pilot to take control of the drone and preventing the drone from performing

the RTH when it is close to the destination (see Figure 17).

The implementation of SwitchToManual using DRES-ML syntax was shown

in Figure 19. The condition that guards this scenario is implemented inside of the Given

clause using the associated expressions that handles comparisons of the status of the

GPS and flight resources, and comparative expression to the relative distance of drone.

To intercept the RTH scenario (join point 4), the return to home starts event

is implemented in the When clause. In order to override the execution of the RTH

59

Figure 19 – Switch to Manual exceptional scenario modeling with DRES-ML

Source – Prepared by the author

predefined scenario with the adaptation called "turnManual", it was used the adaptation

type "Around" in Then clause.

The script in the Then clause defines the start manual flight control as a

necessary adaptation. Thus, the drone control changes to the manual, enabling the pilot

to take over the flight and to conduct it in the safest way possible. Thus, this adaptation

collaborates so much with the objective (i) because the pilot can enable the continuity of

the environment monitoring.

7.2.1.1.3 SafeRTH

The Return to Home (RTH) operation (RTH scenario) is a useful drone

protection feature. When a drone control error occurs (for example, signal lost), it

ascends to the pre-defined RTH height and starts to flying back straight to the initial

location (home point). However, if the height has not been adjusted correctly to avoid

tall obstacles, such as trees, antennas, and others, and the obstacle avoidance sensor

does not work correctly, the drone can collide.

Thus, the SafeRTH exceptional scenario performs a safe landing operation to

guarantee the drone’s safety in the situation where there is a malfunction in the collision

sensor during the RTH operation. It is worth mentioning that this adaptation can bring

new situations that require other adaptations, such as MoveAside or Keepflying (as can

be seen in Figure 17).

The modeling of this described scenario using DRES-ML syntax can be seen

in Figure 20. The Given clause was implemented using a logical expression containing

inner expressions about the status of the RTH and the collision sensor, associating

them by an "and" operator.

The first internal expression compares, using the "equal to" as comparison

60

Figure 20 – SafeRTH exceptional scenario modeling with DRES-ML

Source – Prepared by the author

operator, the status of the return to home operation with the "STARTED" status. This

condition validates whether the drone is performing a return home operation. The last

internal expression checks whether the status of the obstacle sensor is equal to the

error value, representing the situation in which that resource is faulty. These expressions

represent the implementation of the guard for SafeRTH.

As can be seen, join point 3 (see Figure 17) allows interception in the

predefined Flying scenario. This is modeled within the When clause using the drone

maneuver direction event without defining a specific direction (wildcard "*"). This strategy

is important because, whatever the direction of the drone’s maneuver is, the intercept

point can be used.

In the Then clause, "Around" is used to prevent that the drone continues

maneuvering and make it to perform the adaptive behavior modeled within the script

named "newSafeLand". The script that defines adaptive behavior forces only staring

a safe landing command, assuming that making an safe landing is safer for the drone

than it keep performing flight maneuvers towards home without monitoring the collision

sensor. Therefore it reduces the loss of drones, objective (ii) of the application.

7.2.1.1.4 MonitorEnvironment

To carry out an efficient monitoring environment, the smoke sensor is used

together with a visual monitoring (camera) so that the pilot can view possible fires during

the drone’s mission. When the drone detects a region with fire through the smoke sensor,

it takes some pictures of the environment for a further analysis of the firefighters and

provides visual hints to assist in the location for any local combat operation. However,

when a malfunction occurs with the camera, the drone must fly around the fire source

position. These steps make it possible to restrict the area using GPS data.

61

In this scenario, it was assumed that the fire detection is carried out from

the source to the destination. Thus, Figure 21 illustrates the movements necessary

to restrict the fire area used in the adaptation. The triangle represents the region

where the smoke sensor detected the fire, while the circle indicates the end of the

adaptive behavior. Besides, each numbered arrow indicates the direction and order of

the required movements.

Figure 21 – Necessary adaptation movements

Source – Prepared by the author

Figure 22 shows the MonitorEnvironment exceptional scenario’s implemen-

tation using the DRES-ML syntax. The condition is implemented, in the Given clause,

using the status of the camera actuator and the result of smoker detector sensor

expressions, both associated by the operator "and". The first one is compared to

the "DETECTED" value using an equality operation ("equal to"), and the last one is

compared to the "STARTED" value using an unequal operator ("not equal to").

The join point 3 (see Figure 13) is the interception of the Flying scenario,

however, MonitorEnviroment determines the drone’s maneuver event for a specific

direction "EAST". In addition, this interception is realized before the Flying scenario,

thus, the adaptation strategy "Before" is used in the Then clause and the adaptation

script called the "framework" is indicated. The necessary adaptation are implemented

using the drone maneuver commands passing the necessary directions (such as shown

in Figure 21). This adaptation allows monitoring to be carried out even in such an

emerging situation, therefore it collaborates with the objective (i) of the application.

It is worth mentioning that it was assumed that the drone is flying from west

62

Figure 22 – MonitorEnvironment exceptional scenario modeling with DRES-ML

Source – Prepared by the author

to east and that these commands are appropriate for that context situation being able to

perform the expected adaptation (demarcate the area containing the fire).

7.2.1.1.5 EmergencyCamera

Although the camera is used to support monitoring the flight region, it can

also be used as an instrument to assist in locating a lost drone. Based on this premise,

the EmergencyCamera exceptional scenario was created.

When the drone needs to realize a safe landing and has a problem with

the GPS (as shown in the condition in Figure 17), localizing, it may be challenging.

Therefore, photos or videos that the camera can provide indications to assist in locating

the drone. This scenario applies the emergency mode that reduces the drone’s battery

consumption, turns on the camera directed either to the origin or to the destination

locations through the gimbal, depending on which one is closer.

Figure 31 shows the implementation of this scenario using the DRES-ML.

The When clause contains a conditional expression that handles GPS status, comparing

it to the error status ("ERROR") using the comparison operator ("equal to").

As can be seen in Figure 17, that the join point 2 intercepts after the execution

of the SafeLanding exceptional scenario. Therefore, it is modeled using the safe

landing event starts inside the When clause, and "After" is specified in the Then clause,

representing the type of adaptation. Besides, in the last clause, it is indicated which

script represents the adaptive behavior by name, in that situation, called "helperCamera".

63

Figure 23 – EmergencyCamera exceptional scenario modeling with DRES-ML

Source – Prepared by the author

Finally, it was modelled the script in terms of command and flow statements.

Thus, they are executed to start the camera, start the manual gimbal and start the

energy saving mode. To allow the camera to point to the nearest region between origin

and destination, it is used the if-else statement with the condition being modeled using

the comparative relative distance expression. It checks if the drone’s distance from the

origin is less than the destination’s distance. If the drone distance to the origin is smaller,

the drone should point the camera to the west using gimbal rotation event. In this case,

the drone rotates the camera to 180 degrees on the yam axis. Otherwise, the drone

rotates to 0 degrees also on the yam axis. It is worth mentioning that it was assumed

that the drone always initiates it mission in the west and has the destination in the east,

as stated in the problem description. This adaptation tries to maximize the change of

the drone to be tracked in a situation where the drone is lost, therefore it assists in the

objective (ii) of the system.

7.2.1.2 Wrapper Generator

In this section, it is presented an implementation of a Model-to-Text generator

to the Dragonfly drone simulator (MAIA et al., 2019b) from DRES-ML. Due to this, the

output artifact is a wrapper code implemented using AOP.

Figure 24 shows the mapping between the BDD concepts used in the DRES-

ML and the AOP technique for creating wrappers for the Dragonfly tool. The state of

the context (Given), along with the occurred event (When), represents the conditional

64

pointcut, the adaptive behavior (Then) represents a advice.

Figure 24 – Correlation between DRES-ML and AOP structures.

Source – Prepared by the author

Once defined how the DRES-ML concepts can be translated into the concepts

of the wrapper, it was possible to implement a script to perform an automated translation

that generates executable wrapper Java code for the Dragonfly tool. That process was

realized using the TextGen language that is integrated with the MPS JetBrains. That

integration allows that TexteGen traverses each modeled node from DRES-ML AST and

transforms it into output text values implemented through templates.

The MoveAside exceptional scenario implemented in DRES-ML is used to

exemplify how TextGen performs to generate wrapper code. Figure 25 exhibits the

modeled AST and the generator script for that example. The nodes, the child nodes,

properties of AST are shown through regular boxes, while the scripts to produce the

wrapper code using the Textgen language based on each in node are shown through

dashed boxes.

The M2T process, through the implemented script, obtains the necessary

information from the AST to create the target code using the Textgen language. There-

fore, it provides in its syntax instructions for getting information from each node, such as

$node.child and $attributed node$, to obtain information from a child node and from

attributes from current node, respectively. The values that do not follow this syntax are

constants, such as "public aspect" in the Exceptional Script node.

The generator performs the transformation process using the defined tem-

plate by the TextGen script by starting the execution from the root (Exceptional Scenario)

and going through the tree according to the script specifications. That template con-

structs the header and delimits the body of the aspect object. The name and body

65

Figure 25 – AST and TextGen scripts for Move Aside exceptional scenario

Source – Prepared by the author

content of the aspect class are requested from attribute name, and Given, When and

Then child nodes, respectively.

The sub tree of the AST that specifies the Given clause represents actual

context of drone and environment forming the condition of advice. This is designed

with conjunctive associations (logical expressions related by logical operators &&) of

expressions of drone resources in relation to distance of regions and wind speed. These

expressions contain templates that use the Dragonfly API and values specified in the

attributes of each resource node to define the conditions understandable by the tool.

The Safe Landing event is the join point to the adaptive behavior of Move

Aside, thus the When node contains the template that declares the pointcut and it child

specifies the signature of the method from tool’s API that represents this event.

The Then node contains the device type specification (before, after or around)

and specifies instructions for the drone to perform the expected adaptation. This new

66

behavior was translated using while statement (repetition structure) to execute command

for the drone repetitively, while it is not flying over a land region. The repetition stop

condition was built using a method defined in the tool’s API that returns the drone’s

distance to a region passed by parameter as a String. That distance is obtained through

value defined in current node from the region attribute (WATER). Furthermore, for the

operator (==) and the value for comparison (0) are obtained from the same node through

the values specified for the operator and the distance attributes. In addition, the body of

statement contains maneuver commands to land. It is translated by an API method of

the tool causing the drone to maneuver to a position that approaches the passed region

(LAND).

Figure 26 – Generated move aside wrapper.

Source – Prepared by the author

After the M2T process has been carried out, an artifact is produced con-

taining the MoveAside exceptional scenario using the wrapper technique and using

API commands of the target tool (Figure 26). Thus, the artifact can be compiled and

executed together with the Dragonfly simulator. The simulation of the drone running on

the tool both the normal and the adaptive behavior of MoveAside was recorded2.

An complete generator was implemented in order to translate exceptional

scenarios previously presented in Section 7.2.1.1. It was created to transform the

exceptional scenario modeled with DRES-ML to a wrapper code that can be executed

in the DragonFly simulator. The transforming code, also using the Texgen language,
2 https://cutt.ly/shDDP3Z

67

can be found in the code repository3.

Figure 27 represents the corresponding wrapper for the KeepFlying excep-

tional scenario. The conditional pointcut is defined by the When and Given clauses. The

former represents the call of the safe landing method of the tool’s API (join point), while

the latter implements the conditional expression of pointcut inside the if ’s guard. They

check whether the wind direction is to the east and its speed is greater or equal than 5

m/s, and the distance of the drone from destination is smaller than 2000 meters (mean-

ing 2 cells of environment panel of the Dragonfly). These conditions are implemented

by the accessible methods environment.getWindDirection - returning a wind direction

string value, environment.getWindSpeed - returning a speed wind integer value and

drone.getDistance - returning an integer value of the drone’s distance to a specified

region, from environment and drone entities of the simulator.

The Then clause specifies the advice that implements the adaptive behaviors.

The statements needed for adaptation are grouped within a method that is called within

the body of the advice. The adaptation is implemented using the While structure and the

drone.directionManeuver method, while receives parameters directing the drone to the

destination location. Besides, that clause specifies the advice type that is implemented

at the beginning of the advice signature. The regular and adaptive behaviors were

recorded in the simulator4 to make it clear how they work.

Figure 27 – Generated Keep flying wrapper

Source – Prepared by the author

Figure 28 shows the generated wrapper of SafeRTH exceptional scenario. It
3 https://github.com/lucasvieira123/DSL-Dragonfly/tree/DSLv.5
4 https://cutt.ly/EjYItxh

68

uses an around advice in the join point that performs drone maneuvers for any direction

(drone.directionManeuver(*)). The conditions of the pointcut are implemented using

a methods of the drone’s API that get the state of the return to home operation and

the state of the collision sensor. They verify whether it is performing the operation to

return to the home point (drone.isReturningToHome()) and check if the collision sensor

is failing (drone.getCollisionSensorState() == "FAILURE"). The adaptation represented

by the advice implements a forced landing through the safelanding() method. The

execution of this wrapper was also recorded5.

Figure 28 – Generated SafeRTH Wrapper

Source – Prepared by the author

Figure 29 shows the generated wrapper from SwitchToManual exceptional

scenario. The RTH STARTS event in DRES-ML is represented by ReturnToHome

method call, building the pointcut implementation. To validate whether the GPS resource

is in an error status, it is implemented using a GPS API method (drone.getGPSState())

that is compared to "FAILURE". In addition, methods of the drone API are used to check

the distance to a defined region (drone.getDistance()) and to check whether drone is

running an automatic flight, (it is used the isAutomatic() method). The adaptive behavior

is facilitated by the method already implemented in the drone API, setIsAutomatic(false),

forcing the manual pilot control. The execution of this wrapper can be viewed for a better

understanding6.

Figure 30 illustrates the wrapper created from the exceptional scenario Moni-

torEnvironment. The pointcut is implemented using the directionManeuvre() method

included in the drone API. In order to check if the status of the camera actuator is
5 https://cutt.ly/mjYPuXR
6 https://cutt.ly/kjU2eUr

69

Figure 29 – Generated SwitchToManual Wrapper

Source – Prepared by the author

not started, it is used the getCameraState() method of the drone entity and compared

whether its value is different from "ON". In addition, to perform the framework flight look-

ing for fire, call the maneuvre method (drone.directionManeuvre()) were used indicating

in the parameter the direction obtained from the drone resource attribute. The execution

of this wrapper was also recorded to facilitate the understanding7.

Figure 30 – Generated MonitorEnvironment Wrapper

Source – Prepared by the author

The EmergencyCamera exceptional scenario has the generated wrapper

represented in Figure 31. As already known, the SafeLanding starts event is imple-
7 https://cutt.ly/bjU87xk

70

Figure 31 – Generated EmergencyCamera Wrapper

Source – Prepared by the author

mented in a pointcut of the safeLanding() join point and the verification of the GPS

status inside the Given clause is mapped to the condition of the advice implemented

through the drone.getCameraState() method. To implement the commands to start the

camera and the automatic gimbal, it is necessary to use the modifiers setCameraState()

and setGimbalState() passing as parameter "ON" for each resource and, to start the

drone’s Energy Saving mode, it is necessary to use the setEconomyMode(true) method.

The setGimbalDirection() method of the drone entity is capable of indicating the desired

rotation in yam axis for which the degree of rotation is implemented as directions. It was

also recorded the execution of this wrapper in the Dragonfly simulator8.

8 https://cutt.ly/8jU89Dv

71

8 CONCLUSION AND FUTURE WORKS

The applicability of the drone in different tasks and environments has soared

with the advance of drone technologies. In addition, the increasing level of automation

reduced the need for a pilot intervention. However, there are lots of uncertainties that

cannot not initially be predicted at design time and that generates exceptional situations

during the drone use. Thus, drones could expand their degree of autonomy through

self-adaptive capabilities to deal with those exceptional situations.

Based on that, this work proposed an approach to model exceptional situ-

ations and self-adaptive behaviors for drone-based applications. Initially, the domain

expert diagnoses the possible exceptional scenarios and the corresponding behaviour

adaptive strategies. After that, the domain expert implements the exceptional scenarios

and the self-adaptive behaviours using the high level abstractions provided by the

domain-specific language DRES-ML. Finally, the user can export the modelled scenar-

ios for a target platform using engines that map the domain language to the language

used on the target platform.

The DRES-ML is based on techniques such as behavior-driven development

(BDD) and aspect-oriented programming (AOP). A domain analysis was carried out

to survey the main concepts related to the domain to increase the expressiveness of

the language. The DRES-ML was based on the Jetbrains Meta Programming System

(MPS), a well known language workbeanches example. That gives support for language

implementation, definition of a modeling environment and realization of the M2T process.

To check the applicability of the proposed DSL a proof of concept was carried

out using an application for monitoring forest fires using a drone. There were modelled

five exceptional scenarios. And, an engine to transform the scenario specifications into

the wrapper code used in the Dragonfly simulator. Thus, it was possible to verify the

applicability of the proposed approach by modeling exceptional scenarios and adaptive

behaviors using the domain-specific language, and transforming them in a artifact that

is executable in a drone simulator.

72

8.1 ACHIEVEMENTS

This research produced two papers, one published in the 2019 IEEE/ACM

14th International Symposium on Software Engineering for Adaptive and Self Managing

Systems (SEAMS) (MAIA et al., 2019b) and another one in the 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE) (MAIA et al.,

2019b). Also, it developed the Dragonfly simulator1.

Besides, other publications were produced not directly related to this work;

However, they improved the researcher’s foundation, such as (DAMASCENO et al.,

2019); (SOUZA et al., 2019) (ALVES et al., 2020); (COSTA et al., 2020), (SOUZA et al.,

2020) and (GADELHA et al., 2020).

8.2 LIMITATIONS

It is possible to cite as current limitations of this work:

• The validation was performed only with a single target platform, thus it is necessary

to try to implement the M2T process for other drone platforms;

• Validation of the usability of the language was not carried out, since only the author

of this work used the language. Therefore, empirical experiments with other users

are necessary to evaluate the language usability;

• No other technique, besides aspect-oriented programming, has been tested to

include adaptive behavior at runtime. It is necessary to investigate other application

strategies, such as dependency injection, APIs, design patterns, among others, to

analyses how the DSL can be used with other drone platforms;

• Only one example application has been used as a proof of concept. Then, for

a deeper analysis of the DSL, more examples of drone applications should be

modelled.

8.3 FUTURE WORK

For future work, it is expected to conduct a user experiment to the analyze

usability DRES-ML, checking his/her ability to understand, validate, modify, and even

develop solutions through the approach. In addition, some properties will also be
1 https://github.com/DragonflyDrone/Dragonfly

73

analyzed, such as Productivity - the effectiveness of using the proposed solution;

Coverage - the ability of language to express all or a subset of the specific domain;

Completeness - refers to the degree to which a language can express programs that

contain all the information needed to execute them, and so on. Finally, the applicability

on other target platforms should also be analyzed with other techniques for including

adaptive behaviors at runtime.

74

BIBLIOGRAPHY

AHMAD, M. First step towards a domain specific language for self-adaptive systems.
In: IEEE. 2010 10th Annual International Conference on New Technologies of
Distributed Systems (NOTERE). [S.l.], 2010. p. 285–290.

ALVARES, F.; RUTTEN, E.; SEINTURIER, L. Behavioural model-based control for
autonomic software components. In: IEEE. 2015 IEEE International Conference on
Autonomic Computing. [S.l.], 2015. p. 187–196.

ALVES, L. V.; MELO, R. T. de; COSTA, L. F. da; ROCHA, C. L.; ERIKO, W. d. O.;
CAMPOS, G. A. de; SOUZA, J. T. de. An agent program in an iot system to recommend
plans of activities to minimize childhood obesity. In: IEEE. 2020 IEEE 44th Annual
Computers, Software, and Applications Conference (COMPSAC). [S.l.], 2020. p.
674–683.

ARCAINI, P.; MIRANDOLA, R.; RICCOBENE, E.; SCANDURRA, P. A pattern-oriented
design framework for self-adaptive software systems. In: IEEE. 2019 IEEE Interna-
tional Conference on Software Architecture Companion (ICSA-C). [S.l.], 2019. p.
166–169.

BARESI, L.; GUINEA, S.; TAMBURRELLI, G. Towards decentralized self-adaptive
component-based systems. In: Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems. [S.l.: s.n.], 2008. p.
57–64.

BOZHINOSKI, D.; RUSCIO, D. D.; MALAVOLTA, I.; PELLICCIONE, P.; TIVOLI, M. Flyaq:
Enabling non-expert users to specify and generate missions of autonomous multicopters.
In: IEEE. 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). [S.l.], 2015. p. 801–806.

BRABERMAN, V.; D’IPPOLITO, N.; KRAMER, J.; SYKES, D.; UCHITEL, S. Morph: A
reference architecture for configuration and behaviour self-adaptation. In: Proceedings
of the 1st International Workshop on Control Theory for Software Engineering.
[S.l.: s.n.], 2015. p. 9–16.

BRAMBILLA, M.; CABOT, J.; WIMMER, M. Model-driven software engineering in prac-
tice. Synthesis lectures on software engineering, Morgan & Claypool Publishers,
v. 3, n. 1, p. 1–207, 2017.

BROY, M.; KIRSTAN, S.; KRCMAR, H.; SCHÄTZ, B. What is the benefit of a model-
based design of embedded software systems in the car industry? In: Emerging
Technologies for the Evolution and Maintenance of Software Models. [S.l.]: IGI
Global, 2012. p. 343–369.

CALINESCU, R.; GERASIMOU, S.; JOHNSON, K.; PATERSON, C. Using runtime
quantitative verification to provide assurance evidence for self-adaptive software. In:
Software Engineering for Self-Adaptive Systems III. Assurances. [S.l.]: Springer,
2017. p. 223–248.

CAMPAGNE, F. The MPS language workbench: volume I. [S.l.]: Fabien Campagne,
2014. v. 1.

75

CECIL, J. A conceptual framework for supporting uav based cyber physical weather
monitoring activities. In: IEEE. 2018 Annual IEEE International Systems Conference
(SysCon). [S.l.], 2018. p. 1–8.

CHHETRI, M. B.; LUONG, H.; UZUNOV, A. V.; VO, Q. B.; KOWALCZYK, R.; NEPAL, S.;
RAJAPAKSE, I. Adsl: An embedded domain-specific language for constraint-based dis-
tributed self-management. In: IEEE. 2018 25th Australasian Software Engineering
Conference (ASWEC). [S.l.], 2018. p. 101–110.

CONCEPT of Operations for Drones: A risk based approach to regulation of un-
manned aircraft. 2015. Disponível em: <https://www.easa.europa.eu/document-library/
general-publications/concept-operations-drones>.

COSTA, L. F. da; MELO, R. T. de; ALVES, L. V.; ROCHA, C. L.; ARAUJO, E. W. de O.;
CAMPOS, G. A. L. de; SOUZA, J. T. de; TRIANTAFYLLIDIS, A.; ALEXIADIS, A.; VOTIS,
K. et al. Smart algorithm for unhealthy behavior detection in health parameters. In:
IEEE. 2020 IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). [S.l.], 2020. p. 654–663.

COSTIOU, S.; KERBOEUF, M.; CAVARLÉ, G.; PLANTEC, A. Lub: a dsl for dynamic con-
text oriented programming. In: Proceedings of the 11th edition of the International
Workshop on Smalltalk Technologies. [S.l.: s.n.], 2016. p. 1–9.

CULLEN, A.; WILLIAMS, B.; BERTINO, E.; ARUNKUMAR, S.; KARAFILI, E.; LUPU,
E. Mission support for drones: A policy based approach. In: Proceedings of the
3rd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications. [S.l.:
s.n.], 2017. p. 7–12.

DAMASCENO, A.; FERREIRA, A.; GAMA, E.; MORAES, J. P. R.; ALVES, L. V.; BAR-
BOSA, M. H.; CHAGAS, M. L.; FREIRE, E. S. S.; CORTÉS, M. I. A landscape of
the adoption of empirical evaluations in the brazilian symposium on human factors in
computing systems. In: Proceedings of the 18th Brazilian Symposium on Human
Factors in Computing Systems. [S.l.: s.n.], 2019. p. 1–11.

ERDELJ, M.; NATALIZIO, E. Uav-assisted disaster management: Applications and
open issues. In: IEEE. 2016 international conference on computing, networking
and communications (ICNC). [S.l.], 2016. p. 1–5.

ERDWEG, S.; STORM, T. V. D.; VÖLTER, M.; TRATT, L.; BOSMAN, R.; COOK, W. R.;
GERRITSEN, A.; HULSHOUT, A.; KELLY, S.; LOH, A. et al. Evaluating and comparing
language workbenches: Existing results and benchmarks for the future. Computer
Languages, Systems & Structures, Elsevier, v. 44, p. 24–47, 2015.

FOWLER, M. Inversion of control containers and the dependency injection pat-
tern (2004). 2004.

FOWLER, M. Language workbenches: The killer-app for domain specific languages.
2005.

GADELHA, R.; VIEIRA, L.; MONTEIRO, D.; VIDAL, F.; MAIA, P. H. Scen@ rist: an
approach for verifying self-adaptive systems using runtime scenarios. Software Quality
Journal, Springer, p. 1–43, 2020.

https://www.easa.europa.eu/document-library/general-publications/concept-operations-drones
https://www.easa.europa.eu/document-library/general-publications/concept-operations-drones

76

GAMMA, E. Design patterns: elements of reusable object-oriented software. [S.l.]:
Pearson Education India, 1995.

Ganek, A. G.; Corbi, T. A. The dawning of the autonomic computing era. IBM Systems
Journal, v. 42, n. 1, p. 5–18, 2003.

GHARIBI, M.; BOUTABA, R.; WASLANDER, S. L. Internet of drones. IEEE Access,
IEEE, v. 4, p. 1148–1162, 2016.

GHOSH, D. DSLs in action. [S.l.]: Manning Publications Co., 2010.

GOMES, R.; STRAUB, J.; JONES, A.; MORGAN, J.; TIPPARACH, S.; SLETTEN,
A.; KIM, K. W.; LOEGERING, D.; FEIKEMA, N.; DAYANANDA, K. et al. An intercon-
nected network of uas as a system-of-systems. In: IEEE. 2017 IEEE/AIAA 36th Digital
Avionics Systems Conference (DASC). [S.l.], 2017. p. 1–7.

GROHER, I.; VOELTER, M. Aspect-oriented model-driven software product line en-
gineering. In: Transactions on aspect-oriented software development VI. [S.l.]:
Springer, 2009. p. 111–152.

HAM, Y.; HAN, K. K.; LIN, J. J.; GOLPARVAR-FARD, M. Visual monitoring of civil
infrastructure systems via camera-equipped unmanned aerial vehicles (uavs): a review
of related works. Visualization in Engineering, SpringerOpen, v. 4, n. 1, p. 1, 2016.

HAREL, D.; THIAGARAJAN, P. Message sequence charts. In: UML for Real. [S.l.]:
Springer, 2003. p. 77–105.

HASSANALIAN, M.; ABDELKEFI, A. Classifications, applications, and design chal-
lenges of drones: A review. Progress in Aerospace Sciences, Elsevier, v. 91, p.
99–131, 2017.

HOPPE, M.; BURGER, M.; SCHMIDT, A.; KOSCH, T. Dronos: a flexible open-source
prototyping framework for interactive drone routines. In: Proceedings of the 18th
International Conference on Mobile and Ubiquitous Multimedia. [S.l.: s.n.], 2019.
p. 1–7.

JAHAN, S.; WALTER, C.; ALQAHTANI, S.; GAMBLE, R. Adaptive coordination to
complete mission goals. In: IEEE. 2018 IEEE 3rd International Workshops on Foun-
dations and Applications of Self* Systems (FAS* W). [S.l.], 2018. p. 214–221.

KEPHART, J. O.; CHESS, D. M. The vision of autonomic computing. Computer, IEEE,
v. 36, n. 1, p. 41–50, 2003.

KICZALES, G.; COADY, Y. Aspectc. [S.l.]: Online publishing, URI http://www. cs. ubc.
ca/labs/spl/projects/aspectc. html, 2001.

KICZALES, G.; HILSDALE, E. Aspect-oriented programming. sigsoft softw. eng. Notes,
v. 26, n. 5, p. 313, 2001.

KICZALES, G.; HILSDALE, E.; HUGUNIN, J.; KERSTEN, M.; PALM, J.; GRISWOLD, W.
Getting started with aspectj. Communications of the ACM, ACM New York, NY, USA,
v. 44, n. 10, p. 59–65, 2001.

77

KICZALES, G.; HILSDALE, E.; HUGUNIN, J.; KERSTEN, M.; PALM, J.; GRISWOLD,
W. G. An overview of aspectj. In: SPRINGER. European Conference on Object-
Oriented Programming. [S.l.], 2001. p. 327–354.

KOUNEV, S.; BROSIG, F.; HUBER, N. The descartes modeling language. [S.l.]:
Universität Würzburg, 2014.

KŘIKAVA, F. Domain-specific modeling language for self-adaptive software sys-
tem architectures. Tese (Doutorado), 2013.

LUO, Y.; YU, Y.; JIN, Z.; LI, Y.; DING, Z.; ZHOU, Y.; LIU, Y. Privacy-aware uav flights
through self-configuring motion planning. 2020.

MAIA, P.; VIEIRA, L.; CHAGAS, M.; YU, Y.; ZISMAN, A.; NUSEIBEH, B. Cautious
adaptation of defiant components. 2019.

MAIA, P. H.; VIEIRA, L.; CHAGAS, M.; YU, Y.; ZISMAN, A.; NUSEIBEH, B. Dragonfly: a
tool for simulating self-adaptive drone behaviours. In: IEEE. 2019 IEEE/ACM 14th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). [S.l.], 2019. p. 107–113.

MAIER, M. W. Architecting principles for systems-of-systems. Systems Engineering:
The Journal of the International Council on Systems Engineering, Wiley Online
Library, v. 1, n. 4, p. 267–284, 1998.

MOD, U. Joint doctrine note 2/11 the uk approach to unmanned aircraft systems.
UK MoD The Development, Concepts and Doctrine Centre, SWINDON, Wiltshire,
2011.

MOREIRA, A. Aspect-oriented software development. 2005.

NIU, H.; GONZALEZ-PRELCIC, N.; HEATH, R. W. A uav-based traffic monitoring
system-invited paper. In: IEEE. 2018 IEEE 87th Vehicular Technology Conference
(VTC Spring). [S.l.], 2018. p. 1–5.

NORTH, D. et al. Introducing bdd. Better Software, v. 12, 2006.

ODERSKY, M.; ALTHERR, P.; CREMET, V.; EMIR, B.; MANETH, S.; MICHELOUD, S.;
MIHAYLOV, N.; SCHINZ, M.; STENMAN, E.; ZENGER, M. An overview of the Scala
programming language. [S.l.], 2004.

OREIZY, P.; GORLICK, M. M.; TAYLOR, R. N.; HEIMHIGNER, D.; JOHNSON, G.;
MEDVIDOVIC, N.; QUILICI, A.; ROSENBLUM, D. S.; WOLF, A. L. An architecture-based
approach to self-adaptive software. IEEE Intelligent Systems and Their Applications,
IEEE, v. 14, n. 3, p. 54–62, 1999.

PERERA, T.; PRIYANKARA, A.; JAYASINGHE, G. Unmanned arial vehicles (uav) in
smart agriculture: Trends, benefits and future perspectives. Uva Wellassa University of
Sri Lanka, 2019.

RAHMES, M.; CHESTER, D.; HUNT, J.; CHIASSON, B. Optimizing cooperative cognitive
search and rescue uavs. In: INTERNATIONAL SOCIETY FOR OPTICS AND PHO-
TONICS. Autonomous Systems: Sensors, Vehicles, Security, and the Internet of
Everything. [S.l.], 2018. v. 10643, p. 106430T.

78

ROBERGE, V.; TARBOUCHI, M.; LABONTÉ, G. Fast genetic algorithm path planner for
fixed-wing military uav using gpu. IEEE Transactions on Aerospace and Electronic
Systems, IEEE, v. 54, n. 5, p. 2105–2117, 2018.

ROMANOVSKY, A.; ISHIKAWA, F. Trustworthy cyber-physical systems engineering.
[S.l.]: CRC Press, 2016.

SALEHIE, M.; TAHVILDARI, L. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., Association for Computing Machin-
ery, New York, NY, USA, v. 4, n. 2, maio 2009. ISSN 1556-4665. Disponível em:
<https://doi.org/10.1145/1516533.1516538>.

SHETTY, S.; NEEMA, S.; BAPTY, T. Model based self adaptive behavior language
for large scale real time embedded systems. In: IEEE. Proceedings. 11th IEEE In-
ternational Conference and Workshop on the Engineering of Computer-Based
Systems, 2004. [S.l.], 2004. p. 478–483.

SILVA, J. P. S. da; ECAR, M.; PIMENTA, M. S.; GUEDES, G. T.; FRANZ, L. P.;
MARCHEZAN, L. A systematic literature review of uml-based domain-specific modeling
languages for self-adaptive systems. In: Proceedings of the 13th International Con-
ference on Software Engineering for Adaptive and Self-Managing Systems. [S.l.:
s.n.], 2018. p. 87–93.

SILVAGNI, M.; TONOLI, A.; ZENERINO, E.; CHIABERGE, M. Multipurpose uav for
search and rescue operations in mountain avalanche events. Geomatics, Natural
Hazards and Risk, Taylor & Francis, v. 8, n. 1, p. 18–33, 2017.

SOUZA, J. T. de; CAMPOS, G. A. L. de; COSTA, L. F. da; MELO, R. T.; WERBET,
E.; ROCHA, C.; ALVES, L. V. An artificial agent to recommend activities to minimize
childhood obesity problems in an iot system. In: SBC. Anais da VII Escola Regional
de Computação Aplicada à Saúde. [S.l.], 2019. p. 139–144.

SOUZA, J. T. de; CAMPOS, G. A. L. de; ROCHA, C.; WERBET, E.; COSTA, L. F. d.;
MELO, R. T. de; ALVES, L. V. An agent program in an iot system to recommend activities
to minimize childhood obesity problems. In: Proceedings of the 35th Annual ACM
Symposium on Applied Computing. [S.l.: s.n.], 2020. p. 654–661.

SPINCZYK, O.; GAL, A.; SCHRÖDER-PREIKSCHAT, W. Aspectc++ an aspect-oriented
extension to the c++ programming language. In: Proceedings of the Fortieth Interna-
tional Conference on Tools Pacific: Objects for internet, mobile and embedded
applications. [S.l.: s.n.], 2002. p. 53–60.

STEINBERG, D.; BUDINSKY, F.; MERKS, E.; PATERNOSTRO, M. EMF: eclipse mod-
eling framework. [S.l.]: Pearson Education, 2008.

VOELTER, M.; BENZ, S.; DIETRICH, C.; ENGELMANN, B.; HELANDER, M.; KATS,
L. C.; VISSER, E.; WACHSMUTH, G. DSL engineering: Designing, implementing
and using domain-specific languages. [S.l.]: dslbook. org, 2013.

VOGEL, T.; GIESE, H. A language for feedback loops in self-adaptive systems: Exe-
cutable runtime megamodels. In: IEEE. 2012 7th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS). [S.l.], 2012.
p. 129–138.

https://doi.org/10.1145/1516533.1516538

79

WANG, H.; ZHAO, H.; ZHANG, J.; MA, D.; LI, J.; WEI, J. Survey on unmanned aerial ve-
hicle networks: A cyber physical system perspective. IEEE Communications Surveys
& Tutorials, IEEE, 2019.

WERMELINGER, M.; YU, Y. Analyzing the evolution of eclipse plugins. In: Proceedings
of the 2008 international working conference on Mining software repositories.
[S.l.: s.n.], 2008. p. 133–136.

XU, R.; YU, P.; ABRAMSON, M. J.; JOHNSTON, F. H.; SAMET, J. M.; BELL, M. L.;
HAINES, A.; EBI, K. L.; LI, S.; GUO, Y. Wildfires, global climate change, and human
health. New England Journal of Medicine, Mass Medical Soc, 2020.

YU, Y.; BARTHAUD, D.; PRICE, B. A.; BANDARA, A. K.; ZISMAN, A.; NUSEIBEH, B.
Livebox: A self-adaptive forensic-ready service for drones. IEEE Access, IEEE, v. 7, p.
148401–148412, 2019.

ZHANG, R.; HOLVOET, T.; SONG, B.; PEI, Y. Uavs vs. pirates: An anticipatory swarm
monitoring method using an adaptive pheromone map. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), ACM New York, NY, USA, v. 14, n. 4, p.
1–31, 2020.

80

APPENDIX

81

APPENDIX A – Abstract Syntax Resources

Table 1 presents the abstract syntax of the resources, presenting the type of expression, the elements

of the syntax and an example. For a visualization of this table in another perspective, can be found on this <https:

//cutt.ly/OjfYo85>.

Table 1 – The abstract syntax of the resources
Resource Type Abstract Syntax Example instance

Drone-

Maneuver-

Direction

Conditional

Expression

<EqualityOperatorEnum>

<DirectionEnum>

(Drone.Direction ==

NORTH)

Command

Expression

<DirectionEnum> Drone.Direction NORTH

Event

Expression

<DirectionEnum> Drone.Maneuvers NORTH

Drone-

Maneuver-

Direction-

ToRegion

Conditional

Expression

<EqualityOperatorEnum>

<RelativePositionEnum>

(Drone.Direction 6=
DESTINATION region)

Command

Expression

<RelativePositionEnum> Drone.Direction ORIGIN

Event

Expression

<RelativePositionEnum> Drone.Maneuvers WATER

DroneCurrent-

Position Conditional

Expression

<EqualityOperatorEnum>

<RelativePositionEnum>

<Waypoint>

(Drone.position ==

Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;)

DroneRotate
Conditional

Expression

<DroneAxesEnum>

<GeneralOperatorEnum>

Integer

(PITCH Drone.rotation >=

15°)

Command

Expression

<DroneAxesEnum> Integer
ROLL Drone.rotation to 45

°

Event

Expression

<DroneAxesEnum> Integer
YAM Drone.rotation turns

to 90 °

DroneSpeed
Conditional

Expression

<GeneralOperatorEnum>

Integer
(Drone.speed <= 2.5 m/s)

Command

Expression

Integer Drone.speed to 1.2 m/s

Event

Expression

Integer
Drone.speed goes to 3.0

m/s

https://cutt.ly/OjfYo85
https://cutt.ly/OjfYo85

82

DroneSpeed

Mode

Conditional

Expression

<EqualityOperatorEnum>

<ControlSwitchEnum>

(Drone.speed 6=
AUTOMATIC)

Command

Expression

<ControlSwitchEnum> Drone.speed to MANUAL

Event

Expression

<ControlSwitchEnum>

Drone.speedMode goes to

AUTOMATIC

Drone

Acceleration

Conditional

Expression

<GeneralOperatorEnum>

Integer

(Drone.acceleration > 0.3

m/s2)

Command

Expression

Integer
Drone.acceleration to 0.1

m/s2

Event

Expression

Integer
Drone.acceleration goes

to 0.2 m/s2

Drone

Acceleration

Mode

Conditional

Expression

<EqualityOperatorEnum>

<ControlSwitchEnum>

(Drone.acceleration ==

AUTOMATIC)

Command

Expression

<ControlSwitchEnum>
Drone.acceleration to

AUTOMATIC

Event

Expression

<ControlSwitchEnum>
Drone.acceleration goes

to MANUAL

DroneAltitude
Conditional

Expression

<GeneralOperatorEnum>

Integer
(Drone.altitude > 53 m)

Command

Expression

Integer Drone.altitude to Integer m

Event

Expression

Integer
Drone.altitude goes to 80

m

Motor

Conditional

Expression

<EqualityOperatorEnum>

<MotorStatusEnum>

(Motor.Status ==

STOPPED)

Command

Expression

<MotorActionEnum> START Motor

Event

Expression

<MotorEventEnum> Motor STARTS

Sta-

tusEnum

"STARTED"|"STOPPED"|

"ERROR"

Command "START"|"STOP"

83

Even-

tEnum
"START"|"STOP"|"*"

Mission

WayPoint

Conditional

Expression

<EqualityOperatorEnum>

<1>*<n><WayPoints>

(Mission.waypoints ==

Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;)

Command

Expression

<1>*<n><WayPoints>

Mission.waypoints

Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;

Mission

Conditional

Expression

<EqualityOperatorEnum>

<MissionStatusEnum>

(Mission.Status 6=
PAUSED)

Command

Expression

<MissionActionEnum> RESUME Mission

Event

Expression

<MissionEventEnum> Mission UPLOADS

Sta-

tusEnum

"READY_TO_START"|

"READY_TO_UPLOAD"|

"UPLOADING"|

"ERROR"|

"STARTED"|

"PAUSED"|

"CANCELED"|

"RESUMED"

Command

"START"|

"PAUSE"|

"CANCEL"|

"RESUME"|

"RECOVER"|

Even-

tEnum

"UPLOADS"|

"STARTS"|

"PAUSES"|

"CANCELS"|

"RESUMES"|

"*"

ReturnToHome

HomePoint

Conditional

Expression

<EqualityOperatorEnum>

<Waypoint>

(RTH.Status

6=Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;)

Command

Expression

<Waypoint>

RTH.homePoint

Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;

84

Event

Expression

<Waypoint>

Mission.homePoint goes

to Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;

ReturnToHome

HomePoint

CurrentPosition

Command

Expression

"CURRENT_POSITION"
RTH.homePoint CURRENT

POSITION

ReturnToHome

Conditional

Expression

<EqualityOperatorEnum>

<RTHStatusEnum>
(RTH.Status == ERROR)

Command

Expression

<RTHActionEnum> RESUME RTH

Event

Expression

<RTHEventEnum> RTH PAUSES

Sta-

tusEnum

"READY_TO_START"|

"READY_TO_UPLOAD"|

"UPLOADING"|

"ERROR"|

"STARTED"|

"PAUSED"|

"CANCELED"|

"RESUMED"

Command

"START"|

"PAUSE"|

"CANCEL"|

"RESUME"|

"RECOVER"|

Even-

tEnum

"UPLOADS"|

"STARTS"|

"PAUSES"|

"CANCELS"|

"RESUMES"|

"*"

EnergySaving

ModeLow

Warning

Conditional

Expression

<GeneralOperatorEnum>

Integer

(EnergySaving-

Mode.lowBatteryWarning

<= 15 %)

Command

Expression

Integer

EnergySaving-

Mode.lowBatteryWarning

15 %

EnergySaving

ModeVery

LowWarning

Conditional

Expression

<GeneralOperatorEnum>

Integer

(EnergySaving-

Mode.veryLowBattery

Warning 6= 15%)

85

Command

Expression

Integer

EnergySaving-

Mode.veryLow

BatteryWarning 15 %

EnergySaving

Mode

Conditional

Expression

<EqualityOperatorEnum>

<EnergySavingMode-

StatusEnum>

(EnergySaving-

Mode.Status 6=
STOPPED)

Command

Expression

<EnergySavingModeActio-

nEnum>
START EnergySavingMode

Event

Expression

<EnergySavingModeEven-

tEnum>

EnergySavingMode

PAUSES

Sta-

tusEnum

"READY_TO_START"|

"READY_TO_UPLOAD"|

"ERROR"|

"STARTED"|

"PAUSED"|

"CANCELED"|

"RESUMED"

Command
"START"|

"PAUSE"|

"STOP"|

"RESUME"

Even-

tEnum

"STARTS"|

"PAUSES"|

"STOPS"|

"RESUMES"|

"*"

SafeLanding

Conditional

Expression

<EqualityOperatorEnum>

<SafeLandingStatusEnum>

(SafeLanding.Status ==

RESUMED)

Command

Expression

<SafeLandingActionEnum> START SafeLanding

Event

Expression

<SafeLandingEventEnum> SafeLanding STARTS

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"STARTED"|

"PAUSED"|

"CANCELED"|

"RESUMED"

86

Command
"START"|

"PAUSE"|

"STOP"|

"RESUME"

Even-

tEnum

"STARTS"|

"PAUSES"|

"STOPS"|

"RESUMES"|

"*"

Landing

Conditional

Expression

<EqualityOperatorEnum>

<LandingStatusEnum>

(Landing.Status 6=
ERROR)

Command

Expression

<LandingActionEnum> PAUSE Landing

Event

Expression

<LandingEventEnum> Landing CANCELS

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"STARTED"|

"PAUSED"|

"CANCELED"|

"RESUMED"

Command
"START"|

"PAUSE"|

"STOP"|

"RESUME"

Even-

tEnum

"STARTS"|

"PAUSES"|

"STOPS"|

"RESUMES"|

"*"

TakeOff

Conditional

Expression

<EqualityOperatorEnum>

<TakeOffStatusEnum>

(TakeOff.Status ==

READY_TO_START)

Command

Expression

<TakeOffActionEnum> RESUME TakeOff

Event

Expression

<TakeOffEventEnum> TakeOff PAUSES

87

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"STARTED"|

"PAUSED"|

"CANCELED"|

"RESUMED"

Command
"START"|

"PAUSE"|

"STOP"|

"RESUME"

Even-

tEnum

"STARTS"|

"PAUSES"|

"STOPS"|

"RESUMES"|

"*"

FlightControl

Conditional

Expression

<ControlSwitchEnum>

<EqualityOperatorEnum>

<FlightControlStatusEnum>

(AUTOMATIC

FlightControl.Status ==

STOPPED)

Command

Expression

<ControlSwitchEnum>

<FlightControlActionEnum>

MANUAL FlightControl

PAUSE

Event

Expression

<ControlSwitchEnum>

<FlightControlEventEnum>

MANUAL FlightControl

STARTS

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"STARTED"|

"STOPPED"

Command "START"|

"STOP"

Even-

tEnum

"STARTS"|

"STOPS"|

"*"

GimbalRotation

Conditional

Expression

<AxesEnum>

<GeneralOperatorEnum>

Integer

(ROLL Gimbal.rotation 6=
10 °)

Command

Expression

<AxesEnum>

Integer

ROLL Gimbal.rotation to

30 °

Event

Expression

<AxesEnum>

Integer

YAM Gimbal.rotation turns

to 45 °

Gimbal

Conditional

Expression

<ControlSwitchEnum>

<GeneralOperationEnum>

<GimbalStatus>

(MANUAL Gimbal.Status

<= CALIBRATING)

88

Command

Expression

<GimbalAction>

<ControlSwitchEnum>

CALIBRATE AUTOMAIC

Gimbal

Event

Expression

<ControlSwitchEnum>

<GimbalEvent>
AUTOMATIC Gimbal *

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"STARTED"|

"STOPPED"|

"CALIBRATING"

Command
"START"|

"STOP"|

"CALIBRATE"

Even-

tEnum

"STARTS"|

"PAUSES"|

"STOPS"|

"RESUMES"|

"*"

Camera

Conditional

Expression

<EqualityOperatorEnum>

<CameraStatusEnum>

(Camera.Status ==

STOPPED)

Command

Expression

<CameraActionEnum> PAUSE Camera

Event

Expression

<CameraEventEnum> Camera RESUMES

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"STARTED"|

"PAUSED"|

"STOPPED"|

"RESUMED"

Command
"START"|

"PAUSE"|

"STOP"|

"RESUME"

Even-

tEnum

"STARTS"|

"PAUSES"|

"STOPS"|

"RESUMES"|

"*"

Camera

FocusPoint

Conditional

Expression

<EqualityOperatorEnum>

<Waypoint>

(Camera.focusPoint ==

Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;)

89

Command

Expression

<Waypoint>

Cam-

era.focusPointLatitude:-

3.78; Longitude:-38.55;

Altitude:5.3;

Event

Expression

<Waypoint>

Camera.focusPoint goes

to Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;

Payload

Conditional

Expression

<EqualityOperatorEnum>

<PayloadStatusEnum>

(Payload.Status 6=
CANCELED)

Command

Expression

<PayloadActionEnum> UNLOAD Payload

Event

Expression

<PayloadEventEnum> Payload LOADS

Sta-

tusEnum

"READY_TO_START"|

"CANCELED"|

"LOADED"|

"UNLOADED"|

"ERROR"

Command
"CANCEL"|

"LOAD"|"

UNLOAD"

Even-

tEnum

"CANCELS"|

"LOADS"|"

UNLOADS"|

"*"

BatteryCapac-

ity Conditional

Expression

<GeneralOperatorEnum>

Integer

(Battery.capacity >= 2

amperes)

BatteryVolt-

age Conditional

Expression

<GeneralOperatorEnum>

Integer
(Battery.voltage == 12 volt)

BatteryCur-

rent Conditional

Expression

<GeneralOperatorEnum>

Integer

(Battery.current =< 2.5

amperes)

BatteryPer-

centage Conditional

Expression

<GeneralOperatorEnum>

Integer

(Battery.percentage >= 20

%)

Battery Conditional

Expression

<EqualityOperatorEnum>

<BatteryStatus>
(Battery.Status == ERROR)

Sta-

tusEnum
"NORMAL"|

"ERROR"

90

GPS

Conditional

Expression

<EqualityOperatorEnum>

<GPSStatusEnum>

(GPS.Status 6=
DEACTIVATED)

Command

Expression

<GPSActionEnum> ACTIVATE GPS

Event

Expression

<GPSEventEnum> GPS CALIBRATES

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"ACTIVATED"|

"DEACTIVATED"|

"CALIBRATING"|

"NEED_CALIBRATION"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"CALIBRATES"|

"*"

GPSResult Conditional

Expression

<EqualityOperatorEnum>

<GPSResultEnum>

(GPS.result ==

STRONG_SIGNAL)

"STRONG_SIGNAL"|

"WEAK_SIGNAL"

RelativeDis-

tance Conditional

Expression

<RelativePositionEnum>

<GeneralOperatorEnum>

Integer

(Drone.distance from

WATER >= 250 m)

Comparative

Relative

Distance

Conditional

Expression

<2>*<2> <Relative-

PositionEnum >

<GeneralOperatorEnum>

(Drone.distance from

LAND <= than distance to

DESTINATION)

ScalarDis-

tance Conditional

Expression

<Waypoint>

<GeneralOperatorEnum>

Integer

(Drone.distance from

Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3; == 300 m)

Obstacle

Avoidance

Sensor

Conditional

Expression

<EqualityOperatorEnum>

<ObstacleAvoidanceSensor

StatusEnum>

(ObstacleAvoid-

ance.Status == AUTO

LANDING)

Command

Expression

<ObstacleAvoidanceSenso-

rActionEnum>

GO HOME

ObstacleAvoidance

Event

Expression

<ObstacleAvoidanceSen-

sorEventEnum>

91

Sta-

tusEnum

"AUTO_LANDING"|

"WAIT"|

"GO_HOME"|

"ERROR"|

"ACTIVATED"|

"DEACTIVATED"

Command
"AUTO_LANDING"|

"WAIT"|

"GO_HOME"|

"DEACTIVATED"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Obstacle

Avoidance

SensorResult

Conditional

Expression

<EqualityOperatorEnum>

<Obstacle

AvoidanceSensorResult>

(ObstacleAvoidance.result

== NON-DETECTED)

"DETECTED"|

"NON-DETECTED"

IMU

Conditional

Expression

<EqualityOperatorEnum>

<IMUStatusEnum>

(IMU.Status ==

NEED_CALIBRATION)

Command

Expression

<IMUActionEnum> ACTIVATE IMU

Event

Expression

<IMUEventEnum> IMU DEACTIVATES

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Accelerometer

Conditional

Expression

<EqualityOperatorEnum>

<AccelerometerStatusEnum>

(Accelerometer.Status ==

DEACTIVATED)

Command

Expression

<AccelerometerActio-

nEnum>
CALIBRATE Accelerometer

Event

Expression
<AccelerometerEventEnum>

Accelerometer *

92

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Gyroscope

Conditional

Expression

<EqualityOperatorEnum>

<GyroscopeStatusEnum>

(Gyroscope.Status 6=
ERROR)

Command

Expression

<GyroscopeActionEnum> CALIBRATE Gyroscope

Event

Expression

<GyroscopeEventEnum> Gyroscope DEACTIVATES

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Compass

Conditional

Expression

<EqualityOperatorEnum>

<CompassStatusEnum>

(Compass.Status ==

DEACTIVATED)

Command

Expression

<CompassAction> CALIBRATE Compass

Event

Expression

<ComapassEventEnum> Compass DEACTIVATES

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

93

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Magnetometer

Conditional

Expression

<EqualityOperatorEnum>

<MagnetometerStatusEnum>

(Magnetometer ==

NEED_CALIBRATION)

Command

Expression

<MagnetometerActio-

nEnum>
ACTIVATE Magnetometer

Event

Expression
<MagnetometerEventEnum>

Magnetometer *

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Barometer

Conditional

Expression

<EqualityOperatorEnum>

<BarometerStatusEnum>

(Barometer.Status 6=
DEACTIVATED)

Command

Expression

<BarometerActionEnum> DEACTIVATE Barometer

Event

Expression

<BarometerEventEnum> Barometer ACTIVATES

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Hygrometer

Conditional

Expression

<EqualityOperatorEnum>

<HygrometerStatusEnum>

(Hygrometer.Status ==

ERROR)

Command

Expression

<HygrometerActionEnum> DEACTIVATE Hygrometer

94

Event

Expression

<HygrometerEventEnum> Hygrometer DEACTIVATES

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

HumidityLevel Conditional

Expression

<GeneralOperatorEnum>

Integer
(Humidity.result >= 5 %)

Thermometer

Conditional

Expression

<GeneralOperatorEnum>

Integer

(Thermometer.Status > 45

°C)

Command

Expression

<ThermometerActionEnum>
<ThermometerActionEnum>

Thermometer

Event

Expression

<ThermometerEventEnum>
Thermometer

<ThermometerEventEnum>

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

Command "ACTIVATE"|

"DEACTIVATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Tempera-

tureLevel

Condi-

tional
<GeneralOperatorEnum>

Integer

(Temperature.result <Gen-

eralOperatorEnum>Integer

°C)

Smoker

Detector

Conditional

Expression

<EqualityOperatorEnum>

<SmokerDetectorStatus-

Enum>

(SmokerDetector.Status

== ERROR)

Command

Expression

<SmokerDetectorActio-

nEnum>

CALIBRATE

SmokerDetector

Sta-

tusEnum

"NEED_CALIBRATION"|

"DEACTIVATED"|

"ACTIVATED"|

"ERROR"

95

Command
"ACTIVATE"|

"DEACTIVATE"|

"CALIBRATE"

Smoker

Detector

Result

Conditional

Expression

<EqualityOperatorEnum>

<SmokerDetector-

ResultEnum>

(SmokerDetector.result ==

NON-DETECTED)

"DETECTED"|

"NON-DETECTED"

Flight Conditional

Expression

<EqualityOperatorEnum>

<FlightStatusEnum>

(Flight.Status 6=
ON_GROUND)

"STOPPED"|

"ON_GROUND"|

"IN_FLIGHT"|

"ERROR"

Lights

Conditional

Expression

<EqualityOperatorEnum>

<LightsStatusEnum>

(Lights.Status ==

DEACTIVATED)

Command

Expression

<LightsActionEnum> ACTIVATE Lights

Event

Expression

<LightsEventEnum> Lights DEACTIVATES

Sta-

tusEnum

"ACTIVATED"|

"DEACTIVATED"|

"ERROR"

Command "ACTIVATE"|

"DEACTIVATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Landinggear

Conditional

Expression

<EqualityOperatorEnum>

<LandinggearStatusEnum>

(LandingGear.Status ==

ERROR)

Command

Expression

<LandinggearActionEnum> DEACTIVATE LandingGear

Event

Expression

<LandinggearEventEnum> LandingGear ACTIVATES

Sta-

tusEnum

"ACTIVATED"|

"DEACTIVATED"|

"ERROR"

Command "ACTIVATE"|

"DEACTIVATE"

96

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

WindSpeed Conditional

Expression

<GeneralOperatorEnum>

Integer
(Wind.speed => 8 m/s)

WindDirectio-

nEnum Conditional

Expression

<EqualityOperatorEnum>

<DirectionEnum>

(Wind.DirectionEnum ==

NORTH)

Anemometrer

Conditional

Expression

<EqualityOperatorEnum>

<AnemometrerStatusEnum>

(Anemometrer.Status ==

ERROR)

Command

Expression

<AnemometrerActionEnum> DEACTIVATE Anemometrer

Event

Expression

<AnemometrerEventEnum>
Anemometrer

DEACTIVATES

Sta-

tusEnum

"ACTIVATED"|

"DEACTIVATED"|

"ERROR"

Command "ACTIVATE"|

"DEACTIVATE"

Even-

tEnum

"ACTIVATES"|

"DEACTIVATES"|

"*"

Emergency

StopMode

Conditional

Expression

<EqualityOperatorEnum>

<EmergencyStopMode-

StatusEnum>

(EmergencyStop-

Mode.Status 6=
READY_TO_START)

Command

Expression

<EmergencyStopModeActio-

nEnum>

PAUSE

EmergencyStopMode

Event

Expression

<EmergencyStopModeEven-

tEnum>

EmergencyStopMode

CANCELS

Sta-

tusEnum

"READY_TO_START"|

"ERROR"|

"STARTED"|

"PAUSED"|

"CANCELED"|

"RESUMED"|

"READY_TO_START"|

Command
"START"|

"PAUSE"|

"CANCEL"|

"RESUME"

97

Even-

tEnum

"STARTS"|

"PAUSES"|

"CANCELS"|

"RESUMES"

WayPoints Concrete <1>*<3>Integer

Latitude:-3.78;

Longitude:-38.55;

Altitude:5.3;

EqualityOper-

atorEnum

Enumera-

tion
"==" || 6=

InEqualityOp-

eratorEnum

Enumera-

tion
">" || "<" || ">=" || "<="

GeneralOper-

atorEnum

Enumera-

tion
"==" || 6= || ">" || "<"

|| ">=" || "<="

Directio-

nEnum

Enumera-

tion

"NORTH" || "SOUTH" ||

"EAST" || "WEST" ||

"NORTH_EAST"||

"SOUTH_EAST" ||

"NORTH_WEST"||

"SOUTH_WEAST"

AxesEnum
Enumera-

tion
"PITCH" || "ROLL" || "YAM"

Control-

SwitchEnum

Enumera-

tion
"AUTOMATIC" || "MANUAL"

RelativePosi-

tionEnum

Enumera-

tion

"OBSTACLE" ||

"DESTINATION" ||

"ORIGIN" || "WATER" ||

"LAND"

Source - Prepared by the author

	c51506831c9b5f5df052f88d3a50e19cb94ef24c1ecbc99ec8b437f5cf799253.pdf
	DRES-ML: a Domain-specific Language for Modelling Exceptional Scenarios and Self-adaptive Behaviours for Drone-based Applications
	Title page

	76b0290301d2720776905a0889004703f99ffc0656931b2949a656a57a1bd76d.pdf
	DRES-ML: a Domain-specific Language for Modelling Exceptional Scenarios and Self-adaptive Behaviours for Drone-based Applications
	DRES-ML: a Domain-specific Language for Modelling Exceptional Scenarios and Self-adaptive Behaviours for Drone-based Applications
	DRES-ML: a Domain-specific Language for Modelling Exceptional Scenarios and Self-adaptive Behaviours for Drone-based Applications
	Abstract
	Abstract

	DRES-ML: a Domain-specific Language for Modelling Exceptional Scenarios and Self-adaptive Behaviours for Drone-based Applications
	c51506831c9b5f5df052f88d3a50e19cb94ef24c1ecbc99ec8b437f5cf799253.pdf
	DRES-ML: a Domain-specific Language for Modelling Exceptional Scenarios and Self-adaptive Behaviours for Drone-based Applications
	Introduction
	Objectives
	General Objectives
	Specific Objectives

	Overview
	Background
	Unmanned aerial vehicle
	Self-Adaptive System
	Domain-Specific Languages
	Aspect-oriented programming

	Related Work
	Self-adaptive approaches for drones
	Domain-specific language approaches for Self-adaptive system
	Modelling language approaches for drones
	Summary

	The DRES Modelling Language
	DRES-ML Overview
	Domain Analysis
	Abstract Syntax
	DRES-ML Modeling Environment
	Model to text - Code Generation process

	Evaluation
	The Dragonfly tool
	Interface
	Execution of flight simulation
	Tool extension flow

	Proof of Concept
	Motivating Example
	Exceptional Scenarios Specification
	KeepFlying
	SwitchToManual
	SafeRTH
	MonitorEnvironment
	EmergencyCamera

	Wrapper Generator

	Conclusion and future works
	Achievements
	Limitations
	Future work

	Bibliography
	APPENDIX
	Abstract Syntax Resources

