
UNIVERSIDADE ESTADUAL DO CEARÁ

CENTRO DE CIÊNCIAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO ACADÊMICO EM CIÊNCIA DA COMPUTAÇÃO

MARCOS VINÍCIUS DE FREITAS BORGES

CLOUD RESTRICTION SOLVER: A REFACTORING-BASED APPROACH TO

MIGRATE APPLICATIONS TO THE CLOUD

FORTALEZA – CEARÁ

2017

MARCOS VINÍCIUS DE FREITAS BORGES

CLOUD RESTRICTION SOLVER: A REFACTORING-BASED APPROACH TO MIGRATE

APPLICATIONS TO THE CLOUD

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Ciência da Computação do
Programa de Pós-Graduação em Ciência da
Computação do Centro de Ciências e Tec-
nologia da Universidade Estadual do Ceará,
como requisito parcial à obtenção do título de
mestre em Ciência da Computação. Área de
Concentração: Ciência da Computação

Orientador: Prof. PhD. Paulo Henrique
Mendes Maia

FORTALEZA – CEARÁ

2017

Dados Internacionais de Catalogação na Publicação

 Universidade Estadual do Ceará

 Sistema de Bibliotecas

Borges, Marcos Vinicius de Freitas.
 Cloud restriction solver: a refactoring-based
approach to migrate applications to the cloud
[recurso eletrônico] / Marcos Vinicius de Freitas
Borges. - 2017.
 1 CD-ROM: il.; 4 ¾ pol.

 CD-ROM contendo o arquivo no formato PDF do
trabalho acadêmico com 67 folhas, acondicionado em
caixa de DVD Slim (19 x 14 cm x 7 mm).

 Dissertação (mestrado acadêmico) - Universidade
Estadual do Ceará, Centro de Ciências e Tecnologia,
Mestrado Acadêmico em Ciência da Computação,
Fortaleza, 2017.
 Área de concentração: Ciência da Computação.
 Orientação: Prof. Dr. Paulo Henrique Mendes Maia.

 1. Evolução do software. 2. Migração para nuvem. 3.
Refatoração. I. Título.

Dedico este trabalho a DEUS e a minha família

por serem a base dos motivos para eu enfrentar e

superar os mais diversos obstáculos, e por serem

a grande verdade na minha vida.

AGRADECIMENTOS

Agradeço primeiramente a DEUS, por estar sempre presente em minha vida, por me dar fé para

que este trabalho fosse concluído, por me ajudar a obter as respostas essenciais em momentos

cruciais tanto durante o período do curso, quanto na vida.

Agradeço à minha família, representada pela minha avó Margarida, minha mãe Jesus, meu pai

Salvador, minhas irmãs Angélica e Jéssica, por nunca deixarem de acreditar em mim e por

sempre me darem forças para seguir em frente e vencer os mais diversos obstáculos durante essa

caminhada.

Agradeço a minha noiva Márcia Cristina, por me ajudar nos momentos difíceis e complexos,

por ter paciência nos momentos que não pude estar presente, por ouvir diariamente os mesmos

assuntos repetitivos, e pelo incentivo e apoio para chegar a esta vitória.

Agradeço ao meu colega de pesquisa Erick Barros pela ajuda imprescindível durante esta

caminhada. Agradeço também aos meus colegas de mestrado Anderson Couto, Flávio, Marcelo

e Robson, pelos mais diversos momentos vividos durante o mestrado. Valeu pessoal, foi muito

bom conhecer vocês, espero que essa amizade se mantenha mesmo pela inevitável distância.

Agradeço ao meu orientador Paulo Henrique, um exemplo de professor responsável, inteli-

gente, dedicado, presente e disponível, que foi de fundamental importância para que eu conse-

guisse chegar ao resultado deste trabalho. Suas correções, questionamentos, debates e auxílios,

influenciaram-me a superar minhas próprias expectativas e barreiras. Hoje posso dizer com muito

orgulho a qualquer pessoa que tive um professor excepcional. Espero passar esse conhecimento,

de qualidade, adiante. Mais uma vez, muito obrigado professor!

Agradeço à CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pela

concessão da bolsa durante todo o período de realização do mestrado.

Agradeço ao Mestrado Acadêmico em Ciência da Computação Universidade Estadual do Ceará

(UECE), que por meio de professores altamente capacitados contribuiu de uma forma muito

relevante para a minha aquisição de novos conhecimentos.

“O sucesso nasce do querer, da determinação e

persistência em se chegar a um objetivo. Mesmo

não atingindo o alvo, quem busca e vence obstá-

culos, no mínimo fará coisas admiráveis.”

(José de Alencar)

RESUMO

A migração de sistemas legados para o modelo Platform as a Service (PaaS) oferece vários

benefícios, mas também traz novos desafios, como lidar com as restrições impostas pelo pro-

vedor de serviços. Além disso, fatores como tempo, treinamento e as extensas atividades de

reengenharia tornam o processo de migração demorado e propenso a erros. Apesar de existirem

várias técnicas para a migração parcial ou total de aplicações legadas para a nuvem, apenas

algumas abordam especificamente a resolução dessas restrições. Este trabalho propõe uma nova

abordagem semi-automática, chamada Cloud Restriction Solver (CRS), para a migração de

aplicações para um ambiente PaaS evitando as restrições dessa nuvem através de refatorações de-

finidas pelo usuário. A abordagem, que promove o reuso de software e é independente da nuvem,

consiste principalmente de duas fases: identificação de restrições, que identifica os trechos de

código que violam as restrições da plataforma PaaS escolhida e a execução da refatoração, que

altera esses trechos por serviços equivalentes habilitados em nuvem. As fases são apoiadas por

engines abertas e extensíveis, CRSAnalyzer e CRSRefactor, que constituem o framework CRS

que implementa a abordagem. A aplicabilidade da abordagem CRS é feita através da ferramenta

CRS4GAE (gerada pelo framework CRS baseado no PaaS Google App Engine (GAE)) em três

aplicações web Java, que foram migradas com sucesso para o GAE.

Palavras-chave: Evolução do software. Migração para nuvem. Refatoração.

ABSTRACT

The migration of legacy systems to the Platform as a Service (PaaS) model provides several

benefits, but also brings new challenges, such as dealing with the restrictions imposed by the

service provider. In addition, factors such as time, training and the extensive reengineering

activities make the migration process time consuming and error prone. Although there exist

several techniques for the partial or total migration of legacy applications to the cloud, only a

few specifically address the resolution of these constraints. This work proposes a novel semi-

automatic approach, called Cloud Restriction Solver (CRS), for migrating applications to a PaaS

environment that avoids the cloud restrictions through user-defined refactorings. The approach,

which fosters software reuse and is cloud-independent, consists of two phases: restriction

identification, identifies the pieces of code that violate the restrictions of the chosen PaaS

platform, and refactoring execution, changes those pieces by equivalent cloud-enabled services.

The phases are supported by open and extensible engines, CRSAnalyzer and CRSRefactor,

which constitute the CRS framework that implements the approach. The applicability of the CRS

approach is done through the CRS4GAE tool (generated by the CRS framework based on Google

App Engine (GAE)) in three Java web applications, which have been migrated successfully to

the GAE.

Keywords: Software evolution. Cloud migration. Refactoring.

LIST OF ILLUSTRATIONS

Figure 1 – Service Models . 21

Figure 2 – Aspects in choosing a cloud model . 23

Figure 3 – Cloud Reference Migration Model’s Processes 25

Figure 4 – 5-Phased Cloud Migration Model . 25

Figure 5 – Two migration strategies to the cloud, cloud hosting and cloudification. 28

Figure 6 – Parse tree for listing 1 . 30

Figure 7 – The proposed approach overview . 36

Figure 8 – CRSAnalyzer - Architecture. 38

Figure 9 – CRSAnalyzer - Execution flow . 40

Figure 10 – CRSRefactor - Architecture . 42

Figure 11 – Communication Class - Architecture . 42

Figure 12 – CRSRefactor - Execution flow . 43

Figure 13 – Google App Engine platform architecture 46

Figure 14 – StackDriver error report . 47

Figure 15 – Using CRSAnalyzer in the application project. 56

Figure 16 – Report of violation of restricted classes of JAX-RS. 56

Figure 17 – Choose CRSRefactor refactorings. 57

Figure 18 – Report of violation of restricted classes of Servlet with Thread. 58

Figure 19 – Using CRSAnalyzer in the Pebble application project. 60

Figure 20 – Restrictions detected by classes. 60

Figure 21 – New abstract target and communication classes. 60

LIST OF TABLES

Table 1 – Challenges in migration of applications to the cloud 23

Table 2 – Correspondence between detection type and ASTNode type. 39

Table 3 – Restricted classes and its respective refactorings 48

LIST OF SOURCE CODES

Source Code 1 – Code excerpt - Simple java code example 29

Source Code 2 – Code excerpt - GAE . 49

Source Code 3 – Code excerpt - GooglePaaSProvider 49

Source Code 4 – Code excerpt - CRSAnalyzer . 49

Source Code 5 – Code excerpt - CRS4GAEFileRefactoring 50

Source Code 6 – Code excerpt - CRSFile . 52

Source Code 7 – Code excerpt - CRS4GAEFile . 52

Source Code 8 – Excerpt from the original code - JAX-RS 55

Source Code 9 – Refactored code excerpt - JAX-RS 55

Source Code 10 – Excerpt from original code - Java with Servlet 58

Source Code 11 – Refactored code excerpt - Java with Servlet 58

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

AST Abstract Syntax Tree

Cloud-RMM Cloud Reference Migration Model

CRS Cloud Restriction Solver

CRS4GAE Cloud Restriction Solver for Google App Engine

GAE Google App Engine

IaaS Infrastrucure as a Service

ICT Information and Communications Technology

IDE Integrated Development Environment

IT Information Technology

JSON JavaScript Object Notation

NoSQL Not Only Strutctured Query Language

PaaS Platform as a Service

PHP Hypertext Preprocessor

SaaS Software as a Service

SDK Software Development Kit

SLA Service Level Agreement

SQL Strutctured Query Language

SUMMARY

1 INTRODUCTION . 15

1.1 STRUCTURE OF THE DISSERTATION 17

2 OBJECTIVES . 18

2.1 GENERAL . 18

2.2 SPECIFIC . 18

3 THEORETICAL BACKGROUND . 19

3.1 CLOUD COMPUTING . 19

3.1.1 Features . 19

3.1.2 Service Models . 20

3.1.3 Deployment Models . 22

3.2 MIGRATION OF APPLICATIONS TO THE CLOUD 22

3.2.1 Classification of migration studies . 24

3.2.2 Service Level Migration . 25

3.2.3 Migration Strategies . 26

3.3 REFACTORING . 27

3.4 CHAPTER SUMMARY . 30

4 RELATED WORK . 31

4.1 CLOUD MIGRATION APPROACHES . 31

4.1.1 Manual Approaches . 31

4.1.2 (Semi)Automatic Approaches . 32

4.2 REFACTORING RECOMMENDATION 33

4.3 CHAPTER SUMMARY . 34

5 CLOUD RESTRICTION SOLVER . 35

5.1 OVERVIEW . 35

5.2 CRS FRAMEWORK . 36

5.2.1 Identification Engine . 37

5.2.2 Refactoring Engine . 39

5.3 CRS INSTANTIATION . 43

5.4 CHAPTER SUMMARY . 44

6 CRS4GAE . 45

6.1 GOOGLE APP ENGINE . 45

6.1.1 Restrictions . 46

6.2 INSTANTIATION OF CRS FOR GAE . 47

6.2.1 Identification Engine . 48

6.2.2 Refatoring Engine . 50

6.3 CHAPTER SUMMARY . 53

7 USAGE EXAMPLE . 54

7.1 JAX-RS FILE UPLOAD . 54

7.2 SERVLET WITH THREAD . 57

7.3 PEBBLE . 59

7.4 CHAPTER SUMMARY . 61

8 CONCLUSION . 62

8.1 BENEFITS . 62

8.2 LIMITATIONS . 63

8.3 FUTURE WORK . 63

REFERENCES . 64

15

1 INTRODUCTION

According to Buyya et al. (2009), the significant evolution of the Information and

Communications Technology (ICT) in the last half of the 20th century, computing can be

considered the fifth basic utility need by the population, as well as the other four indispensable

services: water, electricity, gas and telephony. From that vision, several paradigms have been

proposed among which the cloud computing, a technology trend of the 21st century that leads to

an evolutionary path to provide better responses to current and future ICT requirements, can be

highlighted (BUYYA et al., 2009)(PUTHAL et al., 2015).

Cloud computing has the potential to transform part of the Information Technology

(IT) industry, making software even more attractive as a service (ARMBRUST et al., 2010). It

differs from traditional paradigms, since it brings certain benefits such as: high scalability and

availability; different levels of services to customers, even outside the cloud; payment for use,

which makes it oriented to the scaling economy; its services can be dynamically configured

and delivered on demand (FOSTER et al., 2008)(SOSINSKY, 2010), and provided to external

customers over the internet (MELL; GRANCE, 2011).

The services provided by the cloud, ranging from hardware to software, are specific

to each vendor and can be summarized in the SPI model: Software as a Service (SaaS), the highest

service level closer to the end-user that provides applications on demand, generally in multi-

tenant1 to the clients through the Internet; Platform as a Service (PaaS), which provides a platform

with resources such as programming languages, tools, and frameworks in order to support the

software development process (RIMAL et al., 2009)(PUTHAL et al., 2015); and Infrastructure

as a Service (IaaS), the lowest level that provides for the client infrastructure technology like

virtual machines, operating systems, network and other fundamental resources (RIMAL et al.,

2009)(SOSINSKY, 2010).

In this realm, many IT companies are considering the cloud as an excellent op-

portunity to their business, mainly due to the possibility of creating new applications entirely

based on that new technology (BUYYA et al., 2009)(TRAN et al., 2011) or migrating legacy

systems to a cloud platform (ZHAO; ZHOU, 2014)(MAENHAUT et al., 2016). According to

(GARTNER, 2017), the public cloud global market will reach approximately US$ 247 billion

still in 2017, representing an expansion of 18% over the total raised in 2016. This trend may

continue increasing until 2020 since more companies shall move their current systems to the
1 A software instance that can be shared with two or more clients (MARSTON et al., 2011)

16

cloud.

There are three types of migration of legacy systems, considering the cloud service

models (ZHAO; ZHOU, 2014): (i) migration to IaaS, in which the application is moved to a

virtual machine that loads the software and its components, such as databases; (ii) migration

to PaaS, in which the application has to be refactored according to the target platform to

conform with its restrictions; and (iii) migration to SaaS, in which the legacy application

undergoes a reengineering process or replacement of their services to similar ones available

in the cloud. Among those types, the migration to PaaS is the one that offers more technical

challenges, since a great effort on understanding the involved technologies and cost estimation is

required, as well as the existence of limitations and restrictions imposed by the cloud service

provider (MOHAGHEGHI; SÆTHER, 2011)(VU; ASAL, 2012), such as file writing, thread

execution and socket access. This work focuses on that kind of migration.

From the developer’s point of view, migrating legacy applications to a PaaS provider

manually is a time-consuming and error-prone task, since it can demand special training in the

chosen PaaS platform API and may need changes in the application source code to overcome the

cloud environment restrictions (KWON; TILEVICH, 2014). To tackle that, refactoring emerges

as an interesting and possible solution, since it relies on a series of small code transformations

that maintain the observable system behavior (FOWLER; BECK, 1999). According to (KWON;

TILEVICH, 2014), refactorings can be used to facilitate the transition of an application to the

cloud because the application semantics is preserved and its features in general do not change,

even though it now runs in another environment.

Although there are several techniques to migrate partially or totally legacy applicati-

ons to the cloud (VU; ASAL, 2012; TRAN et al., 2011; MAENHAUT et al., 2013; MAENHAUT

et al., 2016; COSTA et al., 2015; FREY; HASSELBRING, 2011; PRABHAKARAN, 2014;

VASCONCELOS et al., 2015), even using refactoring (KWON; TILEVICH, 2014), just a few

focus in the PaaS migration, particularly addressing the cloud provider restrictions. Such soluti-

ons are important since they help the user to identify the pieces of code that will not run in the

cloud and automatically change them to behaviour equivalent ones, thus easing and boosting the

migration process.

This work proposes a novel semi-automatic approach, called Cloud Restriction Solver

(CRS), to aid the migration of legacy applications to a PaaS environment that avoids the possible

cloud restrictions by using user-defined refactorings. The approach, which is cloud-independent,

17

consists of two phases: restriction identification, which detects the pieces of code that violate

the target PaaS restrictions, and refactoring execution, in which the developer implements

the refactorings that replace that pieces of code by cloud-equivalent services. The phases are

supported by open and extensible engines, CRSAnalyzer and CRSRefactor, respectively. Theses

engines constitute the CRS framework, which implements the approach.

1.1 STRUCTURE OF THE DISSERTATION

The dissertation is structured in six chapters, including the Introduction, which are

described below.

Chapter 2, the objectives of this work are defined.

Chapter 3, named Theoretical Background, presents the main concepts used in

this work, which are: cloud computing (the ground context of the dissertation), migration of

applications to the cloud (the specific context of the study) and refactoring (proposed technique

applied to the specific context).

Chapter 4, Related Work, discusses the main work found in the literature related to

this dissertation. Those papers have been divided in two categories: cloud migration processes

(manual and semi/automatic) and refactoring recommendation.

Chapter 5 describes in detail the approach of this work: Cloud Restriction Solver.

These details demonstrate the overview of the approach, the framework that implements it, along

with its intrinsic aspects (identification and refactoring engines), and a general instantiation

process to be applied to a given cloud target.

Chapter 6, CRS4GAE, shows the instantiation of CRS to the Google App Engine

(GAE) cloud. In that chapter it is highlighted how to extract the GAE information (restrictions)

that serve as a basis for the use of the CRS framework, which will generate the CRS4GAE tool

made up of the identification and refactoring engines based on the GAE environment.

In chapter 7, Usage Example, the applicability of CRS4GAE is demonstrated by

describing the migration of three java web applications using the CRS4GAE tool. The main

results are highlighted, and the links of the applications migrated to cloud and their codes are

made available.

Finally, Chapter 8 presents the conclusions of this work, its contributions, limitations

and possible future work.

18

2 OBJECTIVES

2.1 GENERAL

The main objective of this work is to define a semi-automatic approach for migrating

applications to a given cloud PaaS platform, by detecting in the application code possible

violations of the cloud constraints and performing their corrections through refactorings.

2.2 SPECIFIC

To achieve the general objective of this work, the following specific objectives have

been defined:

a) Define the approach’s general workflow.

b) Create a framework that implements the phases of identification and refactoring

of the CRS approach.

c) Provide a general step-by-step instantiation process of the CRS framework for

any cloud

d) Instantiate the CRS framework for a specific cloud to generate a tool that analyzes

and refactors application codes that violate constraints on that cloud.

e) Demonstrate the applicability of the CRS approach through that tool generated

in three java web applications.

19

3 THEORETICAL BACKGROUND

This chapter presents the main concepts that give the basis for the approach of this

work and is divided into three sections: (i) cloud computing main concepts and features, (ii)

migration of applications to the cloud, and (iii) refactoring.

3.1 CLOUD COMPUTING

Cloud computing represents a fundamental change in the way the IT services are

being invented, developed, deployed and maintained (MARSTON et al., 2011). The use of cloud

computing brings potential benefits to organizations in general (primarily for small businesses),

including greater flexibility and efficiency, in addition to the cost reduction of its service delivery,

reducing the traditional support requirements and the fixed financial expenses commitment.

Since Google’s chief executive, Eric Schmidt, expressed the term “Cloud Computing”

in 2006, a number of IT organizations started to have cloud-based projects. However, the

definitions of the term were quite scattered and divergent (FOWLER; WORTHEN, 2009). To

demonstrate this, Vaquero et al. (2008) conducted a study in which they pointed out 22 definitions

of cloud computing. Despite the expressive number, it is still possible to find more definitions

about that term.

Among the main definitions are those of authors (FOSTER et al., 2008) and (MELL;

GRANCE, 2011), whose ideas can be summarized in the following concept: Cloud Computing

is a paradigm that aims to allow the access, in a suitable way and by demand, to a shared pool

of configurable computational resources (network, servers, storage, applications, services) that

can be quickly supplied and retrieved with the minimum effort from external clients through the

internet.

According to Mell & Grance (2011), cloud computing is still composed of essential

features, service models, and deployment models.

3.1.1 Features

The characteristics of the cloud can be treated as the crucial aspects that differentiate

it from the more traditional paradigms. Those aspects are benefits constituted by a set of attractive

technologies such as (MELL; GRANCE, 2011):

• On-demand self-service: a customer can automatically provision computing resources

20

without the need for interaction with each service provider.

• Broad network access: availability of resources that can be accessed by platform-

independent devices (tablets, mobile phones, workstations) via internet.

• Resource pooling: the provider’s physical and virtual computing resources are organized

to serve multiple clients using a multi-tenant model. These features (such as storage,

processing, bandwidth) are location-independent for the consumer, and can be dynamically

allocated and deallocated according to their needs.

• Rapid elasticity: resources can be provisioned and released, sometimes automatically, so

that the application is always in accordance with the customer demand. From the customer

point of view, these features appear to be limitless and can be ordered in any quantity at

any time.

• Measured service: cloud resources can be monitored, optimised and controlled through a

measurement at some level of abstraction. So there is the guarantee of transparency for

both providers of services to requesting clients in relation to the contracted services.

In addition to those essential characteristics, other benefits can also be highlighted,

such as: (i) low costs and facility to adhere to the model, since the initial investments are greatly

reduced, allowing any company to have a potential high growth; (ii) reliability, providing load

balancing and the ability to handle failures by automatic replacement of unavailable services;

(iii) maintenance and upgrade, since the customer can request upgrade at any time, which is

usually based on the latest versions of the services.

3.1.2 Service Models

The service models consist of the SPI model (SaaS, PaaS, and IaaS) described in

Chapter 1. Figure 1 illustrates the services model in more details. In the SaaS model, access

is accomplished through a client interface, usually a web browser. In that model the client has

no control and cannot discover the underlying software structure (operating systems, servers,

network). However, the problems that happen in this structure are responsibility of the supplier

(SOSINSKY, 2010; PUTHAL et al., 2015). Among the main examples of SaaS there can be

mentioned: word processor (Google Docs1), music streaming (Spotify2), disk storage (Dropbox3,
1 available at <https://www.google.com/docs/about/>
2 available at <https://www.spotify.com/>
3 available at <https://www.dropbox.com/>

https://www.google.com/docs/about/
https://www.spotify.com/
https://www.dropbox.com/

21

Microsoft OneDrive4).

Figure 1 – Service Models

Source: Adapted from Zhang et al. (2010).

PaaS aims to provide to developers a platform that includes systems and environments

that are committed with the entire lifecycle of software development, in addition to its hosting

(RIMAL et al., 2009). At that level of service, the customer does not worry about managing the

underlying hardware layers, being only responsible for the application’s settings and deployment

(PUTHAL et al., 2015). However, in that environment there are many limitations and restrictions

that may vary like programming languages, databases, third-party components among others

(VU; ASAL, 2012). Some of the main PaaS environments are: Google App Engine5, Amazon

Elastic Beanstalk6, IBM Blue Mix7 and Microsoft Azure8.

Finally, the IaaS model provides infrastructure resources that the customer may

need (SOSINSKY, 2010). At this level of service, the client has control of most of those

features and also of some restricted parts of the administration system. With those privileges it is

possible to deploy and run any software, since that environment does not impose restrictions on

applications (PUTHAL et al., 2015). Among the main infrastructure providers are: Compute
4 available at <https://onedrive.live.com/>
5 available at <https://appengine.google.com/>
6 available at <https://aws.amazon.com/pt/elasticbeanstalk/>
7 available at <https://console.ng.bluemix.net/>
8 available at <https://azure.microsoft.com/>

https://onedrive.live.com/
https://appengine.google.com/
https://aws.amazon.com/pt/elasticbeanstalk/
https://console.ng.bluemix.net/
https://azure.microsoft.com/

22

Engine9, Amazon EC210, GoGrid 11, Linode12.

3.1.3 Deployment Models

Deployment models refer to the management and localization of the cloud infras-

tructure, as well as how its resources are shared and viewed (SOSINSKY, 2010). Jadeja & Modi

(2012) and Mell & Grance (2011) classify these models into four types:

• Public: consists of the standard model of cloud computing, in which a service provider

offers resources, such as storage and applications, to the general public via the web.

However, these clouds are less secure and susceptible to malicious attacks compared to

others.

• Private: unlike the public cloud, it allows access for users who manage the resources

and applications within a proprietary organization. The main advantage is to manage the

security, control and maintenance of the data.

• Community: in this model there is shared cloud infrastructure between various organiza-

tions that have common interests (safety requirements, jurisdiction, policies).

• Hybrid: composition of two or more distinct clouds (private, community and public) that

remain as single entities, but which remain united by the standardization that enables the

portability of applications and access to data.

3.2 MIGRATION OF APPLICATIONS TO THE CLOUD

Given the many existing cloud models (services and deployment), some aspects such

as control, flexibility, capacity and level of abstraction should be considered when choosing a

specific cloud environment (see Figure 2) to allocate a certain software. Once the cloud model

is chosen, the software to be allocated in the cloud can be developed from scratch or adapted.

The first option falls under the term cloud adoption, which considers that the whole process

of software development has to be based on the current features and technologies of the cloud.

The second one (adopted in this work) refers to the cloud migration, in which existing software

present in the most diverse organizations can be adapted to the cloud (MENDONÇA, 2014).

Migration of applications to the cloud still involves several challenges that, according
9 available at <https://cloud.google.com/compute/>
10 available at <https://aws.amazon.com/ec2/>
11 available at <https://www.datapipe.com/gogrid/>
12 available at <https://www.linode.com>

https://cloud.google.com/compute/
https://aws.amazon.com/ec2/
https://www.datapipe.com/gogrid/
https://www.linode.com

23

to Rai et al. (2013), can be classified into business and technical factors, shown in Table 1. Among

them, IT training can be highlighted, which usually addresses upgrading IT professionals’ skills

in architecture, implementation and development of cloud applications. Additionally, Scandurra

et al. (2015) report that another challenge to be considered is the vendor lock-in - tying a

technology coming from a vendor’s particular service or product - with respect to portability and

interoperability of applications in general in the cloud, which directly interferes in the selection

of other clouds.

Figure 2 – Aspects in choosing a cloud model

Source: (MAENHAUT et al., 2016).

Table 1 – Challenges in migration of applications to the cloud

Migration Challenges Description

Business Factors

Costs
Existing investments in IT
Data security
Regulations
Provisioning

Technical Factors

Existing infrastructure
Architecture
Complexity
Network and support
IT skills
Service Level Agreement (SLA)

Source: (RAI et al., 2013).

Thus, during the migration process, IT professionals may find problems regarding

24

non-compliance between applications and cloud platforms. As pointed out by Frey et al. (2013),

not every cloud environment is suitable for a software system in the sense that it can impose

constraints on the applications they host. Mendonça (2014) reports that after a migration to

the cloud, a component must be able to resolve its dependencies on interactions with external

services. In this way, developers must adapt or change the affected components such that they

will comply with the cloud through the use of services offered in this new environment.

3.2.1 Classification of migration studies

Jamshidi et al. (2013) and Rai et al. (2015) conducted systematic reviews in order to

classify the main studies in the area of migration to the cloud and to guide the research on this

topic.

In the review of Jamshidi et al. (2013), the authors classified the studies into a

reference model called Cloud Reference Migration Model (Cloud-RMM), dividing them into

four processes that can be seen in Figure 3. The first process (I) consists of a Migration Planning,

which covers feasibility studies, requirements analysis, decisions about the cloud provider, which

parts of the system will be migrated, the cloud services that will be used, and the migration

strategy. The second one (II) deals with the Migration Execution and involves tasks such as data

extraction, architecture readjustment, application adaptation to the cloud, code modifications

and transformations at both conceptual and physical levels of the legacy application. The third

process (III), Migration Evaluation, includes testing, validation and deployment of migrated

systems. Finally, the fourth process (IV) deals with Cross-cutting Concerns, which regards IT

governance, security analysis, effort estimation, and organizational change analysis.

In the systematic review of Rai et al. (2015), the authors classify the studies in a

conceptual model called 5-Phased Cloud Migration Model, illustrated in Figure 4. These five

phases (feasibility analysis, requirements analysis and migration planning, migration execution,

testing and migration validation and fifth, monitoring and maintenance) deal with the subjects of

the Cloud-RMM model’s processes.

This work fits into the migration execution in both reviews, more precisely in the

code modification.

25

Figure 3 – Cloud Reference Migration Model’s Processes

Source: (JAMSHIDI et al., 2013).

Figure 4 – 5-Phased Cloud Migration Model

Source: (RAI et al., 2015).

3.2.2 Service Level Migration

Zhang et al. (2010) and Zhao & Zhou (2014) have carried out a survey about the

main strategies for cloud migration considering the three service models: IaaS, PaaS e SaaS.

In the first category, legacy systems are migrated to an IaaS service, but despite its

26

good cost benefit, the migration is not likely to take full advantage of the cloud’s capabilities.

Generally that category is easier and more used by companies. In the second category, systems

are migrated to a PaaS service usually through code modification or transformation techniques.

However, the adaptation may lead to problems due to the changes in the system code. This is the

most complicated migration type because as there is adaptation of the application to the target

cloud, it brings serious disadvantages such as vendor lock-in tying, risk in the transition of the

application and, finally, the qualification of the IT professionals (cited previously, section 3.2).

Finally, the migration to SaaS aims to perform a complete or partial replacement of a system by

existing cloud services. Depending on how the software is migrated, there may or may not be

reengineering efforts, redesign, and service generation.

This work addresses the migration of applications to the PaaS.

3.2.3 Migration Strategies

Despite the benefits of the cloud, some systems can not be migrated to this type of

environment due to their specific characteristics (eg, critical systems). Others can be deployed

natively to the cloud (cloud-native), and there are still those that need adaptations to be able to

run in the cloud (cloud-enabled) (ANDRIKOPOULOS et al., 2013).

Andrikopoulos et al. (2013) have proposed the following categories to classify the

types of migration to the cloud considering the different adaptation possibilities:

1. Replacement: this type of migration replaces one or more legacy components by services

in the cloud. This is the least invasive of all types and requires data or business layers to

be migrated to a cloud service. The migration process is accomplished by reconfiguring

the application components to remove incompatibilities, thereby enabling them to use the

cloud features.

2. Partial Migration: in this process it is performed only the partial migration of the applica-

tion components to the cloud, which means that other parts of the application still remain

in the original non-cloud environment.

3. Whole stack migration: here the entire application is encapsulated in one or more virtual

machines, which are already running in the cloud. This process is also non-invasive in the

sense that only few changes need to be made in the application to perform the migration.

4. Cloudify: Another example of whole stack migration, in which the application is turned

into a cloud-enabled system through the composition of cloud services.

27

In the same direction, Mendonça (2014) defines two strategies for migration: cloud

hosting and cloudification. In the former, which refers to hosting components in the cloud, there

are four solutions: (i) rebinding, which is the simplest way to deploy an object in the cloud

by simply having the original target component being compatible with the cloud component

and being able to resolve external service dependencies after it has been migrated; (ii) service

adaptation, which is required when there is incompatibility or constraints imposed by the

cloud regarding the communication of the migrated component with the external services, so

service adapters need to be used, one in the external component and the other in the cloud, to

allow communication; (iii) service conversion, which is a more flexible alternative to service

adaptation, but in this case, instead of using adapters, developers intrusively implement the

necessary adaptation in the components so that they use the new cloud-compliant communication

service; (iv) compensation, is a way to change the target component (after migration) so that it

can compensate for any component that can not interact with it, because there is no practical way

to do so.

In the cloudification strategy, which aims to replace some components of the applica-

tion by their cloud counterparts with similar services, there are three solutions: (i) replacement,

which is the simplest form, but the target component and the target cloud service must have

identical or fully compatible interfaces; (ii) interface adaptation, when the target component has

similar functionality to the cloud service, but with an incompatible interface, the solution would

be to reconfigure the components by using adapters (client-side or cloud-side) for the correct use

of that cloud service; (iii) interface conversion, which is similar to the previous one, with the

proviso that instead of adapters, developers implement the necessary interface directly into the

source code of the target component, so that it natively accesses the cloud service.

In this work, it is used the cloudification strategy, more specifically the interface

conversion solution, by directly modifying the component interface using the Adapter design

pattern (GAMMA, 1995) to access the PaaS cloud similar service.

3.3 REFACTORING

According to Pressman & Maxim (2016), the software is subject to change mainly

due to corrections of errors, new features requested by users, and adaptations to new environments.

Considering the cloud as that environment, a solution to this environmental adaptation is the use

of refactorings. In (KWON; TILEVICH, 2014), the authors advocate the use of refactorings to

28

Figure 5 – Two migration strategies to the cloud, cloud hosting and cloudification.

Source: (MENDONÇA, 2014).

ease the migration of an application to the cloud, since the application behaviour is preserved,

even though some features are modified to rely on cloud-based services.

Refactoring, as defined by Fowler & Beck (1999), is a change made in the internal

structure of a software in order to make it easier to understand and less costly to modify. Its

essence consists of performing a series of small transformations without altering the observable

behavior of the system. It can be classified in two main groups: primitive refactorings, an atomic

modification that cannot be split into two or more small refactorings and for which a set of

preconditions is defined to preserve the behaviour, and composite refactorings, composed by

a sequence of primitive refactorings in which the preconditions of all refactorings need to be

29

satisfied (SAADEH et al., 2009). In (FOWLER; BECK, 1999) the authors present an extensive

catalog of refactorings, from where can be highlighted:

• Rename attribute/method/class: this refactoring can be applied when the name of an

attribute, method, or class does not reveal its real purpose. The solution is simply renaming

the artifact to improve the understanding.

• Move method: when a class uses more features of another class than of its own, this

refactoring is applied to move the method from one class to the other. This action also

decreases the coupling between the classes.

• Extract method: this refactoring is used when a code fragment can be grouped into a

well-named method in order to provide better understanding. This technique can also be

applied in methods that are too long and need to be grained.

• Extract superclass: it can be applied when there exists more than one class with similar

features, since this often leads to repeated code. The solution here is to create a superclass

and move the common features to it.

• Pull up method: when there are two subclasses that have methods with identical results, this

refactoring can be used to move the method to a superclass, thus removing the duplicated

behaviour.

The most appropriated way to apply the code refactorings is using an automated tool.

Fowler & Beck (1999) report that the purpose of such tool is the acceleration of the refactoring

process in software, since developers would not waste time in retesting the software at each

code change. Fowler & Beck (1999) still emphasizes that a refactoring tool should be simple,

fast, easy to use and preserve the behavior of the system. One of the main ways to analyze and

transform the codes is considering it as a tree.

In the tree, the application code is represented by nodes generated by a parser13, thus

easing the search of source code snippets (FOWLER; BECK, 1999). An example can be seen in

listing 1 (lines 1 to 3), which is a java code excerpt that aims to display a “Hello World”. The

representation of this listing in the form of tree can be viewed in Figure 6.

Source Code 1 – Code excerpt - Simple java code example

1 public void hello() {

2 System.out.println("Hello World");

3 }

13 Representation of the inherent syntactic structure of a program (AHO; ULLMAN, 1972)

30

Beyond the search, the tree also allows to create new nodes (PaaS cloud-based codes),

to remove nodes (codes that violate restrictions in the cloud), and update nodes (codes that

violate restrictions by new cloud creators), which is of fundamental importance for the approach

of this work that evolves the software to other cloud environments.

Figure 6 – Parse tree for listing 1

Source: (FOWLER; BECK, 1999).

3.4 CHAPTER SUMMARY

This chapter presented the three main concepts used in this work. Regarding the

first one, cloud computing, its main concepts, features and models (service ans deployment)

have been described. The second one, migration of applications to the cloud, showed the main

challenges, the classification of the studies in this topic and the main strategies used to enable

applications to the cloud. Finally, in the last discussed concept, refactoring, main concepts and

examples have been presented.

In the next chapter the main work related to this dissertation are discussed.

31

4 RELATED WORK

In this chapter the main related work are discussed. They are divided in two catego-

ries: techniques for migrating legacy applications to the cloud and refactoring recommendation.

4.1 CLOUD MIGRATION APPROACHES

Cloud migration can be divided in manual and (semi)automatic approaches. The

former concerns from the feasibility planning to the actual migration of applications and legacy

databases to the cloud (VU; ASAL, 2012; TRAN et al., 2011; MAENHAUT et al., 2013;

MAENHAUT et al., 2016; COSTA et al., 2015), while the latter is related to tools that support

and execute the application migration (FREY; HASSELBRING, 2011; KWON; TILEVICH,

2014; PRABHAKARAN, 2014; VASCONCELOS et al., 2015). As the proposed approach of

this work also encloses a manual and an automatic phase, some work from those two migration

process types are discussed in the following sections.

4.1.1 Manual Approaches

The authors in (VU; ASAL, 2012) present some aspects (restrictions, limitations,

requirements) that have to be considered in the questions inherent to migration of legacy applica-

tions to the cloud. More specifically, in that work it is demonstrated a compatibility checklist

(languages, components, and databases) for those applications. Finally, they describe a manual

migration process of three applications, one of them developed in Java and the others in Python,

for the Google App Engine (GAE) aiming at evaluating the feasibility, costs, solutions and efforts

of the migration.

In the same direction, the work in (TRAN et al., 2011) proposes a taxonomy for the

tasks performed in the migration to the cloud. The authors report their experience and technical

effort during the migration of a .NET application for the Windows Azure platform, and also

determine the costs of those tasks. During the process, the authors describe the necessary steps

both to migrate that application to the cloud and to add multi-tenancy to it. The evolution of

the work is presented in (MAENHAUT et al., 2016) and follows the same logic of the previous

one, but in a more generic way covering another application and more hybrid and public cloud

environments. In that new work there are also some considerations about the costs, eminent risks

and benefits of the migration process.

32

In (COSTA et al., 2015) there is an experience report about the partial migration of

two legacy applications in which its local relational database has been migrated to a NoSQL

database in the cloud (Amazon DynamoDB) that aimed to solve performance problems. The

applications, one web and the other one a standalone, have been adapted to use cloud services

through aspect-oriented programming and the Groovy metalanguage feature.

Different from the other work, in the manual phase of the CRS, the developer has

to identify the restricted classes for the target PaaS and proposes refactorings to avoid those

restrictions. Hence, it is the developer’s responsibility to make sure that the migration is feasible

and worthwhile and, if so, he/she can proceed to the next phase.

4.1.2 (Semi)Automatic Approaches

CloudMig (FREY; HASSELBRING, 2011) is a model-driven semi-automatic ap-

proach that aims at assisting engineers in the process of migrating legacy systems to the cloud,

reducing the complexity of alignment between those systems and the target environment at the

level of IaaS and PaaS. More specifically, the approach generates models of the legacy system

in order to compare them to the models of the target cloud environment and their restrictions.

Nonetheless, it does not perform the migration, but only alerts for the possible restrictions

that can occur regarding a cloud profile. Moreover, the available tool does not work properly.

Similarly, the identification engine of this work proposes such alerts by specifying the errors and

classifying them according to the restriction found.

The authors in (VASCONCELOS et al., 2015) propose a non-intrusive automatic

approach based on events called Cloud Detours. That approach establishes a set of detours that

can be manipulated through libraries (e.g, I/O and database detours) by developers such that

the features of on-premise legacy applications can be replaced by compatible cloud services

without making any changes in the original application’s source code by using aspect-oriented

programming. Although the proposed approach is intrusive, i.e, it directly modifies the appli-

cation code, it requires less effort and simpler computational tools to perform the migration.

Moreover, in (VASCONCELOS et al., 2015), the decision about which features to migrate is

taken empirically by the developer, while that task is supported by a restriction identification

tool in the CRS approach.

A process for the migration of JEE web applications that use relational databases to

the Google App Engine platform is presented in (PRABHAKARAN, 2014). The process uses

33

two tools: the Java Source Code Analyzer and the Database Migration Tool, which migrates the

data from relational database to the Cloud Datastore. Different from the proposal of this work,

that work does not address code modification to enable the application to run in the cloud, but

rather focuses on migrating the database data to its equivalent service in the GAE.

In (KWON; TILEVICH, 2014) it is proposed a semi-automatic and intrusive ap-

proach that uses refactoring techniques to help developers in the process of partially migrating

on-premise applications to the cloud. The approach, called Cloud Refactoring, is implemented

using the Eclipse IDE and contains two engines: recommendation and refactoring. Similar

to the work of this dissertation, Cloud Refactoring enables replacing features of on-premise

applications to equivalent ones in the cloud. However, this dissertation focuses on features that

violate restrictions imposed by a cloud environment. This means that, by using approach of this

work, the developer can identify in advance which features will not work in the cloud and then

concentrate on solving those problems by implementing specific refactorings.

4.2 REFACTORING RECOMMENDATION

Several work that deal with refactoring recommendation can be found in the literature.

A recommendation system whose main purpose is to provide refactoring guidelines to aid

developers to remove architectural erosion in the software is presented in (TERRA et al., 2012).

The authors claim that the recommendations made by other tools are too generic, while their

approach gives more details about the process. In (SZŐKE et al., 2015; FOKAEFS et al., 2011)

are presented tools, available as Eclipse plugins, that allow the identification of code smells and

automatically apply the necessary refactorings. This dissertation is related to those work in the

sense that it also recommends the necessary refactoring but when a given restriction is detected

in the code. Additionally, it is also distributed as an Eclipse plugin to facilitate its use.

Other tools in the literature have more specific approaches to select the recommended

refactorings. In (MKAOUER et al., 2014) it is proposed an approach to suggest refactorings to

developers based on their feedback and code changes that uses a multi-objective evolutionary

algorithm. An approach to identify Extract Method refactoring opportunities that uses a ranking

function to classify the generated candidates is presented in (SILVA et al., 2014). This dissertation

differs from those ones in the sense that the refactorings are selected according to the cloud

restrictions found in the application source code. Furthermore, CRS not only recommends the

refactoring, but also is able to apply it to the code.

34

4.3 CHAPTER SUMMARY

This chapter presented the main work found in the literature related to this disserta-

tion. These work were divided into: approaches for migrating applications to the cloud (either

manual or semi-automated); and refactoring recommendation. It could be seen that some other

pieces of work also deal with refactoring applications to the cloud, but none of them apply the

modifications in order to avoid the cloud platform restrictions, which could impede the system to

run in the cloud.

The next chapter will present the approach proposed in this work, Cloud Restriction

Solver (CRS), as well as its main details and instrinsic aspects.

35

5 CLOUD RESTRICTION SOLVER

The migration of legacy applications to the cloud still has many challenges to be

surpassed, particularly in the PaaS level, since there are limitations and restrictions in the

environments offered by the cloud providers. In addition, technical perspective factors like time,

training and extensive activities of reengineering, make harder the work of developers in charge

for the migration process. The proposed approach takes those questions into account and the

importance of emerging new techniques as highlighted in the last systematic reviews of the

literature (JAMSHIDI et al., 2013)(RAI et al., 2015).

This work proposes a semi-automatic approach, called Cloud Restriction Solver

(CRS), to tackle the problem of migrating legacy applications to the cloud by identifying and

replacing the application pieces of code that violate restrictions on a given PaaS environment

using user-defined refactorings. The approach, which is cloud-independent and, therefore, can be

applied to different PaaSs, is implemented by a framework that contains engines that automate

the identification of constraints and the code refactoring application processes. The engines’s

core architecture can be extended and manipulated by the developers according to their need.

The next sections present: the overview of the CRS, a framework that implements it, and a

step-by-step guide to its instantiation.

5.1 OVERVIEW

Figure 7 illustrates the proposed approach overview. It receives as input the source

code of the legacy application that will be migrated (1), inspects the code to find potential

violations of restrictions specific for the target PaaS provider, informs the found violations and

its respective recommended refactorings to the user, who can apply the refactorings that modify

the code with cloud-enabled similar services (2) and, finally, (3) outputs the refactored code that

preserves the application behaviour but enables it to run on the chosen cloud PaaS platform.

The core of the approach (2) relies on two tool-supported phases: restriction identifi-

cation and refactoring execution. The former (2.1) parses the inputted source code and displays

a report containing the found violations, the files where the violations occur, and the possible

refactorings to be applied. With this information, the user (the developer in charge of migrating

the application) chooses the most appropriate refactoring (2.2) and executes it through the latter

phase (2.3), which generates a temporary solution with the code adapted to use the cloud similar

36

services (2.4).

After migrating an application, it is necessary to perform unit or functional tests in

the adapted system both to ensure that the code modifications have been successfully applied

and to check whether the system behavior was actually preserved (2.5). Some PaaS providers

offer, usually through its SDKs, local servers that simulate the cloud execution environment. If

this technology is available, the test should start using the local server to simulate the application

deployment in the cloud environment. Otherwise, it is necessary to execute the refactored

application directly in the real cloud environment. If a refactoring fails and the modified

application does not pass in the tests, it is necessary to go back to the refactoring engine and

update the refactoring code (or create a new one). After that, the refactoring must be applied

again to the source code until the application passes the migration tests.

Figure 7 – The proposed approach overview

Source: Elaborated by the author.

5.2 CRS FRAMEWORK

The proposed approach is implemented in terms of code through an open source

framework that provides the implementation background needed to enable the user to specify

the constrained functionality of the chosen PaaS. To this end, in this framework, there are two

engines (identification and refactoring) that implement the two phases (2.1 and 2.3) of the CRS

approach. The framework has been implemented in Java and is publicly available at BitBucket1.

An aspect to be highlighted is that both engines transparently communicate via a

JavaScript Object Notation (JSON) file, which is generated by the identification engine to tell its
1 available at <https://bitbucket.org/marcosborges1/crs>

https://bitbucket.org/marcosborges1/crs

37

refactoring counterpart what code elements need to be modified.

In the following sections each engine is detailed, describing their core architecture

and execution flows.

5.2.1 Identification Engine

Performing automatic identification of features that may violate restrictions in the

target cloud is of the utmost importance since it provides developers agility by reducing the time

spent in manually discovering those violations in the source code. In that sense, the best way to

identify PaaS constraints in an application is to verify whether it uses restricted classes, which

are classes that are not allowed to be executed in the chosen PaaS.

To perform the source code analysis, it has been created the CRSAnalyzer tool, which

is based on AutoRefactor2, a free and open source tool implemented in the Eclipse IDE to

refactor Java code. Due to this, CRSAnalyzer is also available as a Eclipse plugin.

Although it is a refactoring engine, AutoRefactor has been chosen as the base for the

identification engine since it uses the Abstract Syntax Tree (AST), which maps the application

source code into a tree in which nodes represent code structures (ECLIPSE, 2006), and the

Visitor3 design pattern (GAMMA, 1995) to query the tree nodes. Those elements (AST and the

Visitor pattern) are very helpful in detecting the points of the code that violate the restrictions.

The identification mechanism proposed here relies on five types of detection that co-

ver the behavioral possibilities of classes and interfaces: class instantiation, variable declaration,

method declaration, class extension and interface implementation.

The CRSAnalyzer core architecture4 is depicted by Figure 8. Its main class is

CRSAnalyzer, which scans the entire source code of the application looking for pieces of code

that violate restrictions specific to the chosen PaaS. That class extends from AbstractionAnalyzer

Rule that, in turn, extends from ASTVisitor to visit the nodes, and implements the AnalyzerRul

e interface that defines methods that provide basic information, such as name (getName()) and

description (getDescription()), used to process the tools as an Eclipse plugin.

The five visit methods, overwritten by the ASTVisitor, receive as parameter the

ASTNode type (an abstract class representing all types of node in an AST, such as classes,
2 available at <http://autorefactor.org>
3 A pattern that allows the definition of a new operation over the object structure without modifying its class code
4 The diagram shows only the classes related to the identification process, but there are several others necessary to

the communication with Eclipse that have been omitted for the sake of simplicity

http://autorefactor.org

38

Figure 8 – CRSAnalyzer - Architecture.

Source: Elaborated by the author.

variables, methods, and conditional structure) of the desired information to visit specific nodes of

an AST. These specific nodes are directly related to the five types of class detection and restricted

interfaces (represented as the enumeration DetectionType in Figure 8) that should be analyzed in

the application code. The relationship between the types of detection and the respective AST

nodes can be seen in table 2.

Finally, the registerDetection method records all data (mostly detection types and

restricted classes) in a JSON format, and the showViolations method shows the results of the

violations as well as recommendation of the refactorings in the console for the developer.

Furthermore, the class CRSAnalyzer is associated with four classes: (i) CRSConsole,

(ii) JSONAnalyzer, (iii) DetectionCounter, (iv) PaaS. CRSConsole is responsible for displaying

the results of the restriction detection in the Eclipse console, while JSONAnalyzer serves to

register these results in a JSON format (used for intercommunication with the refactoring engine).

Due to this, it extends the class that handles JSON files, the JSONObject5. DetectionCounter,

based on the Singleton pattern (GAMMA, 1995), is used to count the occurrences of the restricted

classes according to the the five types of detection previously mentioned and registers it in a

JSON format using the JSONAnalyzer class.

The PaaS class represents the cloud platform for which the application will be
5 available at <https://mvnrepository.com/artifact/com.googlecode.json-simple/json-simple/1.1.1>

https://mvnrepository.com/artifact/com.googlecode.json-simple/json-simple/1.1.1

39

Table 2 – Correspondence between detection type and ASTNode type.
Detection Type ASTNode type Description
instantiation ClassInstanceCreation Nodes associated to the class instantiation
variableDeclaration FiedDeclaration Nodes associated to the class attributes

VariableDeclarationStatement Nodes associated to the variables within methods
methodDeclaration MethodDeclaration Nodes associated to the method declarations
extension TypeDeclaration Nodes associated to the class extension
implementation TypeDeclaration Nodes associated to the interface implementation

migrated and, therefore, contains the restrictions that will be analyzed by CRSAnalyzer. It is an

abstract class that has 3 attributes and 4 methods. The attributes related to PaaS are: abbreviation,

description, and listRestrictedClass, a hash map that associates the restricted classes to each type

of possible detection of them in the code. The methods basically reference or cooperate with the

map attribute. These methods are: addDetectionsType() (which adds detection types); getLis

tRestrictedClasses() (which returns the map), isPresentInRestritecClass() (which checks if a

restricted class is present on the map), and finally the registerRestritedClasses() abstract method

that must be implemented by a ConcretePaaS class with the chosen PaaS restricted classes along

with the types of detection for each of them. Furthermore, ConcretePaaS object is created in the

ConcretePaaSProvider class, which extends from an abstract class PaaSProvider that represents

the company that offers the selected PaaS. Note that those four classes implement the Factory

Method pattern (GAMMA, 1995).

The internal execution flow of the CRSAnalyzer is depicted by Figure 9. From the

original application code (1), a parser is carried out to generate the code Abstract Syntax Tree

(AST), whose nodes (instantiated classes, variables and methods declarations, inherited classes

and classes that implement interfaces) are analyzed according to the type of detection specified

in each restricted class using the behavioral design pattern Visitor (2). If violations are found, the

errors are reported in the IDE console area (3), which precisely indicates the lines of code in the

application files that need to be refactored and recommends the appropriate refactoring. Finally,

the tool generates a JSON file containing the information needed for the refactoring engine.

5.2.2 Refactoring Engine

Different from the traditional refactorings (FOWLER; BECK, 1999), which are

defined to perform an action over a class element (e.g., rename class, remove attribute, extract

method, move method), the primitive refactorings proposed in this work are meant to replace

specific pieces of code that use restricted classes (identified by the identification engine) by

40

Figure 9 – CRSAnalyzer - Execution flow

Source: Elaborated by the author.

equivalent services provided by the PaaS, thus enabling the application to run in the cloud

preserving the same behaviour.

To obtain these refactorings two implementation strategies have been considered.

The first one consisted of modifying the application source code by removing the problematic

pieces and introducing directly the equivalent cloud code. Although efficient, this solution had

three main side effects: firstly, it turned the code highly coupled to the PaaS API, which may

cause compatibility problems (or even breaking the application) in case the API evolves and

some methods suffer changes; secondly, if the previous fact happens and the evolved class is

spread out in many application files, it could be very expensive and time-consuming to update

all affected files; finally, the code became more difficult to understand and, consequently, to

maintain. Therefore, that strategy was discarded.

The chosen strategy consisted of introducing a communication class between the

restricted class and the class that implements the similar service in the cloud. In fact, this solution

implements the Adapter design pattern (GAMMA, 1995), so the communication class has the

same interface (methods signatures) of the restricted class, but it reimplements them using the

correct cloud services. This way, the refactoring replaces the pieces of code where the restricted

class is used according to the five detection types previously described by the correspondent

communication class. This is a simpler and more maintainable solution that should ease the

implementation of new refactoring in the CRS approach.

To perform the modifications in the code, it has been implemented the CRSRefactor

tool, which is also based on AutoRefactor and uses its main concepts: AST and the Visitor

design pattern. The CRSRefactor core architecture can be seen in Figure 10. In this figure, each

refactor class (CRS4<Cloud><RestrictedClass>Refactoring), which is specific to a restricted

41

class in the cloud, must extend from AbstractionRefactoringRule (an abstract class that defines

some internal settings for the refactoring processing). This last class extends from ASTVisitor

and implements RefactoringRule, which is an interface that defines intrinsic methods for

refactorings. Among these methods, can be highlighted: getName(), which indicates the name of

the refactoring; getAbstractRestrictedClassName(), which indicates the restricted abstract class;

getComunicationClassName(), which references the communication class; getRestrictedClass(),

which points to the restricted class of that refactoring; and readJSONFromIdentificationEngine(),

which makes the refactoring engine reading the JSON file outputted by the CRSAnalyzer engine.

The code transformations occur when the specific nodes of the code AST are visited

through the visit methods of the ASTNode class (some of them have been shown in table 2). For

this, the RefactoringContext class can be used, since it aggregates: (i) specific classes for node

creation in the AST (ASTBuilder); (ii) classes for updating, replacing and removing nodes in the

AST (Refactorings), which accomplish this mainly through the ASTRewrite class (directly in

the AST), ASTCommentRewriter (in the AST comments) and SourceWriter (in the source code

itself); (iii) ICompilationUnit, a java compilation unit to which the previous items (i and ii) can

be applied. The imports of the communication class are automatically called in this unit. Finally,

to aid the code transformation, the static class ASTHelper can also be used, since it manipulates,

navigates, and checks nodes in the AST. All those nodes created and updated in AST are based

on the communication classes.

The communication classes are responsible for both implementing cloud services

and adapting the refactorings in order to cover the possibilities (parameters and returns) of the

existing data types and/or objects of the restricted class. To do that, the best found solution was

to make them be constituted as Maven dependencies.

The architecture of the communication class, based on the Adapter pattern, can be

seen in Figure 11, in which the communication class (CRS4<Cloud><RestrictedClass>), which

is specific to a target cloud and a restricted class, must extend an abstract target class (CRS<Restr

ictedClass>) that contains the signatures of the methods of a restricted class. The communication

class must rewrite those methods by adapting them based on classes implementing equivalent

services in the target cloud (<CloudClass>). It is possible that a certain communication class is

associated to another one mainly due to dependencies between restricted classes. It is important to

note that, since the restricted abstract class is defined, it will serve as the basis for all adaptations

from other clouds.

42

Figure 10 – CRSRefactor - Architecture

Source: Elaborated by the author.

Figure 11 – Communication Class - Architecture

Source: Elaborated by the author.

The internal behavior of the refactoring engine can be seen in Figure 12. When

a given refactoring is applied to a violated code (1), the engine firstly converts the code into

its AST representation and then reads the output of the identification engine (data in JSON

format) to locate the nodes and sub-nodes (objects, methods, and signatures of the class) that

need to be modified. Each refactoring then updates the AST nodes by replacing them by nodes

that represent similar services in the respective communication class (2). Finally, the AST is

converted back into a text format, outputting the modified code that will be tested in the cloud

PaaS.

43

Figure 12 – CRSRefactor - Execution flow

Source: Elaborated by the author.

5.3 CRS INSTANTIATION

If a developer is interested in instantiating the CRS approach to a specific PaaS,

he/she has to perform the following steps:

• Choose a target PaaS environment: the first step consists of selecting the cloud provider

and its PaaS environment for which the applications will be migrated.

• Identify the PaaS restrictions and its respective restricted classes: secondly, the developer

needs to find the restrictions inherent to the chosen PaaS (maybe reading its documentation).

After, it is necessary to identify the classes that violate each cloud restriction in the

programming language of the applications to be migrated.

• Specify a refactoring for each restricted class: the developer has to map the methods of the

restricted classes that need to be adapted to the cloud, create a refactoring class and give a

refactoring name for each restricted class. In addition, he/she creates a communication

class and an abstract target class for each refactoring.

• Extend the CRSAnalyzer: here the developer has to implement the restriction detection by

extending the CRSAnalyzer classes, as described in Section 4.2.1.

• Extend the CRSRefactor: the developer has to extend the CRSRefactor classes to implement

the specified refactorings and its communication classes and abstract target classes, as

described in Section 4.2.2.

Finally, the developer has to compile the project to generate the new instance of the

CRS as an Eclipse plugin. It is recommended to give to the new tool the name CRS4<PaaS>,

indicating that it is an instance of the CRS approach for the specific PaaS.

44

5.4 CHAPTER SUMMARY

This chapter presented the approach of this work. It was demonstrated its general vi-

sion and its fundamental phases. In addition, was presented the CRS framework that implements

the approach as well as the technical aspects of its identification and refactoring engines. Finally,

a general process of instantiation of the CRS framework for PaaS clouds was highlighted.

In the next chapter it will be shown an instantiation of the CRS approach to the cloud

Google App Engine, CRS4GAE.

45

6 CRS4GAE

This chapter describes the Cloud Restriction Solver for Google App Engine (CRS4GAE),

an instantiation of the CRS approach designed to help the migration of applications to the Go-

ogle’s PaaS environment. Section 6.1 presents an overview about the Google App Engine,

highlighting the restrictions imposed by the PaaS provider, while section 6.2 explains how

CRS4GAE works, giving some details of the implementation of the engines.

6.1 GOOGLE APP ENGINE

Google App Engine (GAE) is the Google’s cloud PaaS used to develop, in general,

web and mobile applications. It was designed to deal with high request traffic rates, serving

several users through the automatic scalability feature. It was selected as the target cloud

environment of this work since it is a robust platform, has a great adoption in the market, and is

commonly used by other work available in the literature (VU; ASAL, 2012; MAENHAUT et al.,

2016; FREY; HASSELBRING, 2011; PRABHAKARAN, 2014). The platform, which is part

of the Google Cloud Platform1, provides development and execution environments (APIs and

SDKs) to Java, Python, Go and PHP applications (SANDERSON, 2015). This work focus on

Java web applications.

The simplified GAE architecture can be seen in Figure 13. Among the main services

and structures available are: Google Load Balancer, which manages the load balancing of

the applications; Front End App, responsible for redirecting requests for appropriate services;

Memcache, which is the cache memory shared between instances of the GAE, generating high

speed in the availability of the information on the server; and Task Queues, mechanism that

provides redirection of long tasks to back-end servers, making front-end servers free for new user

requests. In addition, GAE also has static and dynamic storage solutions. The former provides

the file storage service called Cloud Storage, whereas the latter provides relational database

services such as Cloud SQL, and non-relational NoSQL such as Cloud Datastore (GOOGLE,

2016).

The model for deploying a java application on GAE consists of 3 steps: (i) creation

of the project in the Google Cloud Console2; (ii) testing of the application on the local server;

(iii) deployment of application on GAE. The first step is crucial because it generates the project
1 available at <https://cloud.google.com/>
2 available at <https://console.cloud.google.com/>

https://cloud.google.com/
https://console.cloud.google.com/

46

Figure 13 – Google App Engine platform architecture

Source: (GOOGLE, 2016)

ID (unique) that serves to identify the application in the infrastructure of the GAE. The second

is based on a web development console that inspects and simulates the application as if it were

in the cloud, however on the local machine. Finally, the deployment step is to upload and

test the application to the GAE cloud. This migrated application can be accessed as follows:

<project-id>.appspot.com.

6.1.1 Restrictions

The Java applications deployed in the GAE are executed in an environment called

sandbox (SANDERSON, 2015), which manages all interactions between the application and the

cloud infrastructure. To ensure the performance and scalability, that environment imposes some

restrictions to the application, such as:

• The application cannot create or modify files directly in the file system and is limited to

read its own resource files.

• It is not allowed to an application to generate additional processes. The threads are not

forbidden, but only work with the following condition: secondary threads are only executed

until the end of the main thread, after that they are terminated.

• The application cannot see or access other applications or processes that are being executed

in the same server.

47

• The requisitions to the application must respond in a maximum of 60 seconds in order to

avoid overloading the web server.

GAE defines as a whitelist a set of classes that can be safely executed in its cloud

environment. Analogously, in this work, classes that lie outside this whitelist, or that are in it

but contain methods that cannot be executed in the cloud, are considered as restricted classes.

Violations of such constraints usually occur at runtime through exceptions and are shown

primarily in the local GAE (console on the local machine) and in the cloud GAE (logs and error

reports from Google StackDriver3 seen in Figure 14). The error report in that figure shows the

number of occurrences of each error, the exceptions triggered by it, the period in which they

occurred, and the status of the server response. Google StackDriver is of paramount importance

as it ensures that errors (exceptions posted) are displayed, since local GAE sometimes does not

show them.

Figure 14 – StackDriver error report

Source: Elaborated by the author.

6.2 INSTANTIATION OF CRS FOR GAE

The instantiation of the CRS4GAE follows the steps presented in Section 4.3. The

chosen PaaS is the GAE and, among its restrictions, has been selected two of them to deal with

in this work: writing files and running threads. As the interest of this work is on migrating Java
3 Integrated solution for monitoring, logs and diagnostics of the Cloud Platform.

48

Table 3 – Restricted classes and its respective refactorings
Restriction Class/package Refactoring/(Class Refactoring) Communication Class Abstract target class

Writing Files FileOutputStream/java.io Adapt FileOutputStream to GAE
(CRS4GAEFileOutputStreamRefactoring) CRS4GAFileOutputStream CRSFileOutputStream

FileWriter/java.io Adapt FileWriter to GAE
(CRS4GAEFileWriterRefactoring) CRS4GAEFileWriter CRSFileWriter

File/java.io Adapt File to GAE
(CRS4GAEFileRefactoring) CRS4GAEFile CRSFile

Threads executions Thread/java.lang Adapt Thread to GAE
(CRS4GAEThreadRefactoring) CRS4GAEThread CRSThread

applications, the restrictions affect the classes java.io.File, java.io.FileWriter, java.io.FileOutput

Stream, and java.lang.Thread.

Then, for each restricted class, has been defined a specific refactoring whose name

follows the template “Adapt <RestrictedClass> to GAE” and its respective class was named

as CRS4GAE<RestrictedClass>Refactoring. For instance, for the restricted class File, the

refactoring created was named Adapt File to GAE and its class name was CRS4GAEFileRefactor

ing.

Each refactoring has a communication class and an abstract target class that contains

the method signatures of the original restricted class. For instance, for the restricted class File, it

was created the classes CRS4GAEFile and CRSFile as the communication and the abstract target

classes, respectively. This entire map is presented in Table 3.

The steps regarding extending the tool will be better described in the next sections.

The final step generated the CRS4GAE tool, which is available at Bitbucket4.

6.2.1 Identification Engine

As seen in section 5.2.1, the CRS identification engine can be implemented for

several clouds and the main aspect to be considered by it is a concrete class of the PaaS (abstract

class) type. Considering GAE this cloud, it is necessary to create a class that represents it (listing

2, line 2), putting its necessary information, such as abbreviation and description (lines 3 to

7). Additionally, in the implementation of the method registerRestritedClasses(), the identified

restricted classes that come from table 3 are registered, along with the types of detection in the

applications for each one (lines 8 to 16).

Since the GAE class is defined, it must be called by its PaaS provider, in this case

Google. So, it has been created the GooglePaaSProvider class that extends from PaaSProvider

(listing 3, line 2) and implements the mandatory method getPaaS(), returning the respective PaaS

of the company, in this case a GAE object (lines 3 to 5).
4 available at <https://bitbucket.org/marcosborges1/crs4gae>

https://bitbucket.org/marcosborges1/crs4gae

49

After that, the chosen PaaS can be defined in the class CRSAnalyzer (listing 4 line 5),

such that CRSAnalyzer checks its restricted classes (specified in the registerRestritedClasses()

method) and performs the analysis in the application source code looking fot each type of

restriction violation detection, generating the console report and the JSON files of the violated

restrictions.

Source Code 2 – Code excerpt - GAE

1 // Omitted details

2 public class GAE extends PaaS {

3 public GAE() {

4 this.abbreviation = "GAE";

5 this.description = "Google App Engine";

6 listRestrictedClasses = new HashMap <String , List <DetectionTypes >>();

7 }

8 public void registerRestritedClasses () {

9 listRestrictedClasses.put("java.io.FileWriter", addDetections(DetectionTypes.

variableDeclaration ,

10 DetectionTypes.methodDeclaration , DetectionTypes.extension ,

DetectionTypes.instanciation));

11 listRestrictedClasses.put("java.io.FileOutputStream", addDetections(

DetectionTypes.variableDeclaration ,

12 DetectionTypes.methodDeclaration , DetectionTypes.extension ,

DetectionTypes.instanciation));

13 listRestrictedClasses.put("java.io.File", addDetections(DetectionTypes.

variableDeclaration ,

14 DetectionTypes.methodDeclaration , DetectionTypes.extension ,

DetectionTypes.instanciation));

15 listRestrictedClasses.put("java.lang.Thread", addDetections(DetectionTypes.

instanciation));

16 }

17 }

Source Code 3 – Code excerpt - GooglePaaSProvider

1 // Omitted details

2 public class GooglePaaSProvider extends PaaSProvider {

3 public PaaS getPaaS () {

4 return new GAE();

5 }

6 }

Source Code 4 – Code excerpt - CRSAnalyzer

50

1 // Omitted details

2 public CRSAnalyzer () {

3 // Omitted details

4 PaaSProvider provider = new GooglePaaSProvider ();

5 this.setPaaS(provider.getPaaS ());

6 this.getPaaS ().registerRestritedClasses ();

7 // Omitted details

8 }

6.2.2 Refatoring Engine

As seen in section 5.2.2, refactorings are rules that aim to adapt restricted class

features to communication classes that implement services in the cloud. These refactorings are

implemented through the CRSRefactor class and the communication classes are made available

as Maven dependencies to ease the code modification during refactoring process. For the Google

App Engine, the four refactorings and their respective created communication classes and abstract

target classes can be seen in table 3.

To demonstrate how to implement a refactoring rule in the CRSRefactor tool, the

Adapt File to GAE refactoring has been chosen. According to the class diagram of the CRSRe-

factor, shown in Figure 10, it has been created the class CRS4GAEFileRefactoring that extends

from AbstractRefactoringRule (Listing 5, line 2) and implements the mandatory methods from

the interface RefactoringRule, which contains the information necessary for the refactoring, such

as its name, restricted abstract class, communication class, and original class that can not be

performed completely in the cloud (lines 4 to 19). Finally, from lines 21 to 39, all AST nodes

related to class instantiation are visited, and if that node belongs to a restricted class type (in this

case, java.io.File), it is replaced (class Refactorings) by a newly created node (class ASTBuilder)

of the respective communication class type (in this case, CRS4GAEFile).

Source Code 5 – Code excerpt - CRS4GAEFileRefactoring

1 // Omitted details

2 public class CRS4GAEFileRefactoring extends AbstractRefactoringRule {

3 // Omitted details

4 @Override

5 public String getName () {

6 return "Adapt File to GAE";

7 }

8 @Override

9 public String getAbstractRestrictedClassName () {

51

10 return "CRSFile";

11 }

12 @Override

13 public String getComunicationClassName () {

14 return "CRS4GAEFile";

15 }

16 @Override

17 public String getRestrictedClass () {

18 return "java.io.File";

19 }

20

21 @Override

22 public boolean visit(ClassInstanceCreation node) {

23

24 final ITypeBinding typeBinding = node.getType ().resolveBinding ();

25 final List <Expression > arguments = ASTHelper.arguments(node);

26

27 // Tree -nodes creators (ASTBuilder) and refactorings (Refactorings)

28 ASTBuilder builder = this.ctx.getASTBuilder ();

29 Refactorings refactorings = this.ctx.getRefactorings ();

30

31 if (typeBinding != null && arguments.size() == 1) {

32 // Full class name , equivalent to import

33 final String fullNodeClassName = typeBinding.getQualifiedName ();

34 if (this.getRestrictedClass ().equals(fullNodeClassName)) {

35 // Replaces the old node with the new one from ASTBuilder

36 refactorings.replace(node ,

37 builder.createNewClass(this.getCommunicationClassName (), builder.

copy(arguments.get(0))));

38 }

39 }

40 // Return Tree

41 return VISIT_SUBTREE;

42 }

43 // Omitted details

44 }

The CRS4GAEFile is the communication class of the refactoring class CRS4GAEFil

eRefactoring. Thus, based on the architecture of the communication class (Figure 11), it must

extend a restricted abstract class CRSFile (which contains the restricted methods of the java.io.F

ile class, shown in Listing 6), and then implement the methods of that class, adapting them based

on equivalent services provided by the Google App Engine.

In Listing 7, the CRS4GAEFile communication class is created based on the restricted

abstract class CRSFile (line 1), along with: (i) the associations of GAE classes (lines 4 and 5);

52

(ii) the possible constructors (lines 6 to 21); (iii) the implementation of the abstract methods,

such as the exists() method (line 23 to 32).

Finally, the Maven dependency containing the GAE communication classes, based

on table 3, is available for download5.

Source Code 6 – Code excerpt - CRSFile

1 public abstract class CRSFile {

2 // Omitted details

3 public abstract String getPath ();

4 public abstract boolean exists ();

5 public abstract String getAbsolutePath ();

6 public abstract boolean mkdirs ();

7 public abstract CRSFile [] listFiles ();

8 public abstract boolean isDirectory ();

9 public abstract String getName ();

10 // Omitted details

11 }

Source Code 7 – Code excerpt - CRS4GAEFile

1 public class CRS4GAEFile extends CRSFile {

2

3 private GcsFilename gcsFileName;

4 private final static GcsService gcsService = GcsServiceFactory.createGcsService(

RetryParams.getDefaultInstance ());

5

6 public CRS4GAEFile(String pathName) {

7 this.setGcsFileName(new GcsFilename(bucketName ,

8 CRSUtils.isDirectory(pathName) ? CRSUtils.asDirectoryGAE(pathName) :

pathName));

9 }

10

11 public CRS4GAEFile(String parent , String child) {

12 this(CRSUtils.asDirectoryGAE(parent) + child);

13 }

14

15 public CRS4GAEFile(File parent , String child) {

16 this(CRSUtils.asDirectoryGAE(parent.getPath ()) + child);

17 }

18

19 public CRS4GAEFile(CRS4GAEFile fileCloud , String name) {

20 this(fileCloud.getPath () + name);

21 }

5 available at <https://mvnrepository.com/artifact/com.github.crs-tool/crs4gae/0.0.2>

https://mvnrepository.com/artifact/com.github.crs-tool/crs4gae/0.0.2

53

22

23 @Override

24 public boolean exists () {

25 boolean exists = false;

26 try {

27 exists = (getGcsService ().getMetadata(this.getGcsFileName ()) != null) ? true

: false;

28 } catch (IOException e) {

29 e.printStackTrace ();

30 }

31 return exists;

32 }

33

34 }

6.3 CHAPTER SUMMARY

In this chapter, the instantiation of the CRS approach to the cloud GAE was presented.

Firstly, the GAE’s general information and its main restrictions were highlighted. Subsequently,

the two restrictions adopted in this work, written on the filesystem and threads, along with the

implementation details of the CRS engines that handle them (identification and refactoring),

were described.

In the next chapter a usage example of the tool CRS4GAE in three applications java

is shown.

54

7 USAGE EXAMPLE

This chapter describes how three java web applications have been migrated to the

GAE using the CRS4GAE tool. They have been selected since they contain features that violate

some of the GAE constraints: writing files and threads.

The first two applications, JAX-RS File Upload and Servlet with Thread, are simple

and have been used to show how the refactorings have been applied and modified the code. The

last one, Pebble, is more complex and has been used to present quantitative results about the

identification of restrictions and the impact of the refactorings in the code.

7.1 JAX-RS FILE UPLOAD

JAX-RS File Upload1 is a JEE example application that illustrates the use of the Java

API for RESTful Web Services (JAX-RS). The API is used to make file uploads to a specific

directory from the local disk using the Jersey Multipart component.

The code excerpt presenting the file writing feature of that application can be seen in

Listing 8. In that code, the FileOutputStream class is instantiated on lines 44 and 49, fact that

violates the restriction of writing files in GAE. To find this code violation, the user can run the

CRSAnalyzer tool by right-clicking on the project directory in Eclipse and choosing the option

“CRSAnalyser” (illustrated by Figure 15), which performs the static analysis in the application’s

project directory. As a result, the tool presents in the Eclipse console a report with the four

violations found, as shown by Figure 16.

The report provides the following information for each violation: type of detection,

detailed description of the reason for detection, file and line where the violation was found, and

the recommended refactoring available at the CRSRefactor tool. For instance, the first violation

in the report informs that a restricted class instantiation was detected, details that the problem

was that the class FileOutputStream cannot be instantiated, points that the problem occurred in

line 44 of the UploadFileService.java, and recommends the user to use the refactoring Adapt

FileOutputStream to GAE.

With those information, the user can apply a refactoring by accessing the correct

file in the project directory, right-clicking on it, choosing the option “CRSRefactor”, and after

selecting “Choose refactorings”. A new screen is displayed containing the available refactorings
1 available at <http://www.mkyong.com/wp-content/uploads/2011/07/JAX-RS-FileUpload-Jersey-Example.zip>

http://www.mkyong.com/wp-content/uploads/2011/07/JAX-RS-FileUpload-Jersey-Example.zip

55

from where the user can select the recommended refactoring by the CRSAnalyzer tool. In the

used example, he/she has selected the refactoring Adapt FileOutputStream to GAE. This process

is depicted by Figure 17.

Finally, after all refactorings have been applied, the generated modified code is

outputted and can be seen in Listing 9. Note that the refactoring basically used a helper class to

provide the byte array (line 48) and changed the restricted classes by its respective communication

classes (line 49). Now, the methods write(), flush(), and close() (lines 50, 51, and 52, respectively)

execute the redefined services in the GAE.

The code in Listing 9 has been successfully tested both in the local environment and

in the cloud. The application correctly uploaded files to the GAE administrator. The feature has

been verified based on the navigation of web pages using the Selenium2 tool and the PageObject3

pattern.

The code (refactored and tested) and the link for the JAX-RS File Upload application

are available at, respectively, Bitbucket4 and in the GAE5.

Source Code 8 – Excerpt from the original code - JAX-RS

42 // Omitted details

43 try {

44 OutputStream out = new FileOutputStream(new File(uploadedFileLocation));

45 int read = 0;

46 byte[] bytes = new byte [1024];

47 out = new FileOutputStream(new File(uploadedFileLocation));

48 while ((read = uploadedInputStream.read(bytes)) != -1) {

49 out.write(bytes , 0, read);

50 }

51 out.flush();

52 out.close();

53 }

54 // Omitted details

Source Code 9 – Refactored code excerpt - JAX-RS

46 // Omitted details

47 try {

48 byte[] bytes = CRSUtils.convertFileToByteArray(uploadedInputStream);

2 available at <http://www.seleniumhq.org>
3 available at <https://martinfowler.com/bliki/PageObject.html>
4 available at <https://bitbucket.org/marcosborges1/restfulexample>
5 available at <http://upteste-1247.appspot.com>

http://www.seleniumhq.org
https://martinfowler.com/bliki/PageObject.html
https://bitbucket.org/marcosborges1/restfulexample
http://upteste-1247.appspot.com

56

Figure 15 – Using CRSAnalyzer in the application project.

Source: Elaborated by author.

Figure 16 – Report of violation of restricted classes of JAX-RS.

Source: Elaborated by author.

49 OutputStream out = new CRS4GAEFileOutputStream(new CRS4GAEFile(uploadedFileLocation))

;

50 out.write(bytes);

51 out.flush();

52 out.close();

53 }

54 // Omitted details

57

Figure 17 – Choose CRSRefactor refactorings.

Source: Elaborated by author.

7.2 SERVLET WITH THREAD

Servlet With Thread6 is an example application that basically works with threads in

an servlet to enable the asynchronous communication in the web page.

The code excerpt in which threads are used in the application can be seen in Listing

10. In this code, the Thread class is instantiated on line 11, fact that violates the thread execution

restriction in the GAE. Likewise the previous application, the CRSAnalyzer tool was used to

find the code violations following the same steps. Figure 18 shows the violation report generated

for this application that recommends the user to apply the Adapt Thread to GAE refactoring. By

doing this using the CRSRefactor tool, it was obtained the refactored code shown in Listing 11.

Given the simplicity of the original code (Listing 10), the modified code is very similar to the
6 available at <http://www.java2s.com/Tutorial/Java/0400__Servlet/ServletWithThread.htm>

http://www.java2s.com/Tutorial/Java/0400__Servlet/ServletWithThread.htm

58

original one, but with the proviso that it uses the communication class CRS4GAEThread.

The migrated application has also been successfully tested both in the local environ-

ment and in the cloud using Selenium and the PageObject pattern. The verification consisted of

checking that running threads did not finish before the GAE main thread.

The code and the link for the migrated Servlet with Thread application are available

at, respectively, Bitbucket7 and the GAE8.

Source Code 10 – Excerpt from original code - Java with Servlet

11 // Omitted details

12 public void init() throws ServletException {

13 searcher = new Thread(this);

14 searcher.setPriority(Thread.MIN_PRIORITY);

15 searcher.start();

16 }

17 // Omitted details

Figure 18 – Report of violation of restricted classes of Servlet with Thread.

Source: Elaborated by author.

Source Code 11 – Refactored code excerpt - Java with Servlet

11 // Omitted details

12 public void init() throws ServletException {

13 searcher = new CRS4GAEThread(this);

14 searcher.start();

15 }

16 // Omitted details

7 available at <https://bitbucket.org/marcosborges1/servletwiththread>
8 available at <http://servletwiththread.appspot.com>

https://bitbucket.org/marcosborges1/servletwiththread
http://servletwiththread.appspot.com

59

7.3 PEBBLE

Pebble9 is a lightweight, open source, Java EE blogging tool. Its content is stored

as XML files on disk and served up dynamically without needing to install a database. The

maintenance and administration are performed through a web browser. To run, the application

needs at least Java 6 and Servlet 2.5.

The results of CRSAnalyzer can be seen in Figure 19. The leftmost side of the Figure

shows that from the 685 Java application files, 46 contained references to restricted classes. In

these 46 files, 362 violations (rightmost side) of restricted classes have been detected, which

included the classes File (328 times), FileOuptuStream (13 times), FileWriter (18 times), and

Thread (3 times).

Figure 20 shows the violations for each restricted class and specific detection type.

For the File class, for instance, there were found 159 variable declarations, 14 method declarations

and 155 instantiations. For the FileOutputStream class, there were 4 variable declarations and 9

instantiations, and for the FileWriter class, 18 variable declarations. Finally the Thread class

presented 3 instantiations.

Figure 21 summarizes the modifications performed after the refactorings. The right-

most side shows the new abstract target classes and the new communication classes introduced in

the application. The number of abstract target classes used in the application is tied to the number

of variable declaration and method declaration detections of a restricted class, while the number

of communication classes are related to the number of instantiation detections. For instance,

the FileOutputStream class has 4 variable declarations and 9 instantiations, so its abstract target

class and communication class will be used 4 and 9 times, respectively. Thus, it can be seen that

summing up the use of the classes CRSFile (173), CRS4GAEFile (135), CRSFileOutputStream

(4), CRS4GAEFileOutputStream (9), CRS4GAEFileWriter (18) and CRS4GAEThread (3), it was

reached the total number of code modifications (362) performed based on the 4 refactorings

available at CRSRefactor.

The migrated application has also been successfully tested in the local environment

and in the cloud using its own tests. It was checked whether the files were created, written and

read in the GAE administrator, even with the new communication classes that abstracted the

storage directories.
9 available at <https://sourceforge.net/projects/pebble/>

https://sourceforge.net/projects/pebble/

60

The code and the link for the migrated Pebble application are available at, respecti-

vely, Bitbucket10 and the GAE11.

Figure 19 – Using CRSAnalyzer in the Pebble application project.

Source: Elaborated by author.

Figure 20 – Restrictions detected by classes.

Source: Elaborated by author.

Figure 21 – New abstract target and communication classes.

Source: Elaborated by author.

10 available at <https://bitbucket.org/marcosborges1/pebble>
11 available at <http://sincere-axon-148921.appspot.com>

https://bitbucket.org/marcosborges1/pebble
http://sincere-axon-148921.appspot.com

61

7.4 CHAPTER SUMMARY

This chapter demonstrated the applicability of the CRS4GAE tool in the migration

to three Java web applications. Two applications were simple and useful to show how the code

is changed after the refactoring, while the other more complex one was used to show how the

restriction identification and refactoring application affectt several code artifiacts.

Finally, the next chapter shows the conclusion of this dissertation, as well as some

considerations and future work.

62

8 CONCLUSION

This work presented Cloud Restriction Solver (CRS), a novel semi-automatic appro-

ach to aid the migration of legacy applications to PaaS environments by avoiding the platform

restrictions through user-defined refactorings. The approach, which is cloud-independent, is

composed of two main phases: the cloud restriction identification, which identifies possible

piece of codes that violate restrictions in the cloud, and refactoring execution, which updates

the identified restricted code by equivalent codes based on the cloud. The work also described

the open source framework that implements the CRS approach, detailing the architecture of its

two engines (CRSAnalyzer and CRSRefactor) used in the phases of the approach. In addition,

a general framework instantiation process, which is able to be applied to any PaaS cloud that

has constraints, was described. From that general process, a specific one was generated for the

Google App Engine, which detailed the use of the engines of the framework. At the end of

that process the tool CRS4GAE was generated and used to migrate successfully three Java web

applications that originally violated some cloud restrictions.

8.1 BENEFITS

An important benefit of the proposed approach is that it fosters the software reuse in

many aspects. Firstly, from the company’s perspective, the approach enables the reuse of the

application in the selected PaaS environment, thus eliminating the necessity of creating a new

version for that cloud platform and, consequently, cutting costs. Secondly, a tool created by the

instantiation of the CRS, like the CRS4GAE presented in this work, can be reused to migrate

several applications.

Thirdly, considering the developer’s point of view, both identification and refactoring

engines are open source and can be extended with new restriction identification rules and refac-

toring operations, respectively, thus reducing the developer’s effort for creating new automatic

migration mechanisms and increasing the number of possible applications to be migrated. At

last, but not least, the CRS itself reuses the AutoRefactor tool to create the identification and

refactoring engines. Therefore, reuse is in the essence of the proposed approach.

63

8.2 LIMITATIONS

Although the results presented in the migration of the applications to the cloud are

promising, there are still some limitations that have to be overcome, such as the fact that the

identification engine analyzes only the application directory, which means that if the application

uses third-part libraries, the migration can be affected. Another limitation to be highlighted is

that refactorings, despite returning the data types and objects expected, may be subject to failure,

and the developer has two possible alternatives: either manually correcting the application code

or creating a rule in the refactoring engine for his/her need.

Finally, as the Eclipse provides two environments for the creation of plugins (develo-

per and runtime workbenches), which require a considerable amount of memory when they are

running, possibly machines with small computational power can not be used. Moreover, to test

the implemented refactorings, it is necessary to run the generated plugin several times, which can

be very costly on the first times, however this effort is reused in many parts of the application.

8.3 FUTURE WORK

As future work, it is planned to instantiate CRS to another PaaS providers and to

migrate other applications to those cloud platforms. In addition, it is intended to improve the

existing CRS4GAE tool, both in increasing the number of violation detection and refactoring

implemented and in the search for new technical solutions. It is also intended to create other

categories of primitive refactorings that privilege the renaming of variables and methods, thus

making possible the creation of composite refactorings by gathering class adaptation and variable

renaming, for instance. Finally, it is aimed at migrating bigger applications to evaluate the effort

on using the proposed approach in that context.

64

REFERENCES

AHO, A. V.; ULLMAN, J. D. The theory of parsing, translation, and compiling. New Jersey:
Prentice-Hall, 1972.

ANDRIKOPOULOS, V.; BINZ, T.; LEYMANN, F.; STRAUCH, S. How to adapt applicati-
ons for the cloud environment. Computing, v. 95, n. 6, p. 493–535, Jun. 2013. Available at:
<https://link.springer.com/article/10.1007/s00607-012-0248-2>. Access on: 18 Nov. 2016.

ARMBRUST, M. et al. A view of cloud computing. Communications of the ACM, New York,
v. 53, n. 4, p. 50–58, Apr. 2010. Available at: <http://dl.acm.org/citation.cfm?id=1721672>.
Access on: 18 Nov. 2016.

BUYYA, R. et al. Cloud computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation computer systems, Amsterdam,
v. 25, n. 6, p. 599–616, Jun. 2009. Available at: <http://dl.acm.org/citation.cfm?id=1529211>.
Access on: 13 Sep. 2016.

COSTA, C. H. et al. Supporting partial database migration to the cloud using non-
intrusive software adaptations: An experience report. In: EUROPEAN CONFE-
RENCE ON SERVICE-ORIENTED AND CLOUD COMPUTING, 567., 2015, Bar-
celona. Electronic proceedings... Barcelona:Springer, 2015. p. 238-248. Available at:
<https://link.springer.com/chapter/10.1007/978-3-319-33313-7_18>. Access on: 05 Dec. 2016.

ECLIPSE. Abstract Syntax Tree. 2006. Available at: <http://www.eclipse.org/articles/Article-
JavaCodeManipulation_AST/>. Access on: 18 Jul. 2016.

FOKAEFS, M. et al. Jdeodorant: identification and application of extract class refacto-
rings. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 33. ,
2011, Honolulu. Electronic proceedings... Honolulu:ACM, 2011. p. 1037-1039. Available
at: <http://dl.acm.org/citation.cfm?id=1985989>. Access on: 12 Feb. 2016.

FOSTER, I. et al. Cloud computing and grid computing 360-degree compared. In: GRID
COMPUTING ENVIRONMENTS WORKSHOP, 1. , 2008, Austin. Electronic proceedings...
Austin:IEEE, 2008. p. 1-10. Available at: <http://ieeexplore.ieee.org/document/4738445/>.
Access on: 10 Sep. 2016.

FOWLER, G. A.; WORTHEN, B. The internet industry is on a cloud – whatever that
may mean. The Wall Street Journal, New York, 26 Mar. 2009. Internet. Available at:
<http://www.wsj.com/articles/SB123802623665542725>. Access on: 01 Jun. 2016.

FOWLER, M.; BECK, K. Refactoring: improving the design of existing code. Boston: Addison-
Wesley, 1999.

FREY, S.; HASSELBRING, W. The cloudmig approach: Model-based migration
of software systems to cloud-optimized applications. International Journal on Ad-
vances in Software, v. 4, n. 3 and 4, p. 342–353, Jan. 2011. Available at:
<http://oceanrep.geomar.de/14431/1/soft_v4_n34_2011_8.pdf>. Access on: 12 Oct. 2016.

FREY, S.; HASSELBRING, W.; SCHNOOR, B. Automatic conformance checking for
migrating software systems to cloud infrastructures and platforms. Journal of Soft-
ware: Evolution and Process, v. 25, n. 10, p. 1089–1115, Oct. 2013. Available at:
<http://onlinelibrary.wiley.com/doi/10.1002/smr.582/abstract>. Access on: 06 Sep. 2016.

65

GAMMA, E. Design patterns: elements of reusable object-oriented software. India: Pearson
Education, 1995.

GARTNER. Gartner says worldwide public cloud services market to grow 18 percent in
2017. 2017. Available at: <http://www.gartner.com/newsroom/id/3616417>. Access on: 04 Apr.
2017.

GOOGLE. Architecture: web application on google app engine. 2016. Available
at:<https://cloud.google.com/solutions/architecture/webapp>. Accessed: 2016-07-01.

JADEJA, Y.; MODI, K. Cloud computing-concepts, architecture and challenges. In: COM-
PUTING, ELECTRONICS AND ELECTRICAL TECHNOLOGIES (ICCEET), 2., 2012,
Dehradun. Electronic proceedings... Dehradun:IEEE, 2012. p. 877-880. Available at:
<http://ieeexplore.ieee.org/document/6203873/>. Access on: 16 Feb. 2016.

JAMSHIDI, P.; AHMAD, A.; PAHL, C. Cloud migration research: a systematic review.
IEEE Transactions on Cloud Computing, v. 1, n. 2, p. 142–157, Oct. 2013. Available at:
<http://ieeexplore.ieee.org/document/6624108/>. Access on: 08 Jan. 2016.

KWON, Y.-W.; TILEVICH, E. Cloud refactoring: automated transitioning to cloud-based
services. Automated Software Engineering, v. 21, n. 3, p. 345–372, Oct. 2014. Available at:
<https://link.springer.com/article/10.1007/s10515-013-0136-9>. Access on: 08 Sep. 2016.

MAENHAUT, P.-J. et al. Migrating medical communications software to a multi-
tenant cloud environment. In: INTEGRATED NETWORK MANAGEMENT (IM), 14.,
2013, Ghent. Electronic proceedings... Ghent:IEEE, 2013. p. 900-903. Available at:
<http://ieeexplore.ieee.org/document/6573107/>. Access on: 04 Feb. 2016.

MAENHAUT, P.-J. et al. Migrating legacy software to the cloud: approach and verification by
means of two medical software use cases. Software: Practice and Experience, v. 46, n. 1, p.
31–54, Jan. 2016. Available at: <http://onlinelibrary.wiley.com/doi/10.1002/spe.2320/abstract>.
Access on: 08 Sep. 2016.

MARSTON, S. et al. Cloud computing—the business perspective. Decision support systems,
v. 51, n. 1, p. 176–189, Feb. 2011. Available at: <http://dl.acm.org/citation.cfm?id=1943810>.
Access on: 08 Sep. 2016.

MELL, P.; GRANCE, T. The NIST definition of cloud computing. 2011. Available at:
<http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf>. Access on: 17 Jul. 2016.

MENDONÇA, N. C. Architectural options for cloud migration. Computer, v. 47, n. 8, p. 62–66,
May. 2014. Available at: <http://ieeexplore.ieee.org/document/6879750/>. Access on: 05 Sep.
2016.

MKAOUER, M. W. et al. Recommendation system for software refactoring using innovization
and interactive dynamic optimization. In: INTERNATIONAL CONFERENCE ON AUTO-
MATED SOFTWARE ENGINEERING, 29., 2014, Vasteras. Electronic proceedings... Vaste-
ras:ACM, 2014. p. 331-336. Available at: <http://dl.acm.org/citation.cfm?id=2642965>. Access
on: 20 Sep. 2016.

MOHAGHEGHI, P.; SÆTHER, T. Software engineering challenges for migration to the service
cloud paradigm: Ongoing work in the remics project. In: IEEE WORLD CONGRESS ON

66

SERVICES, 3. , 2011, Washington. Electronic proceedings... Washington:IEEE, 2011. p. 507-
514. Available at: <http://ieeexplore.ieee.org/document/6012736/>. Access on: 1 Feb. 2016.

PRABHAKARAN, P. Efficiently migrating Java/JEE prototype application to Google App
Engine PaaS Cloud. 2014. 107 f. Dissertation (MSc in Cloud Computing) - School of Compu-
ting, National College of Ireland, Dublin, 2012. Available at: <http://trap.ncirl.ie/1837/>. Access
on: 23 Nov. 2016.

PRESSMAN, R.; MAXIM, B. Engenharia de software. 8. ed. Porto Alegre: McGraw Hill
Brasil, 2016.

PUTHAL, D. et al. Cloud computing features, issues, and challenges: a big picture.
In: COMPUTATIONAL INTELLIGENCE AND NETWORKS (CINE), 8. , 2015, Bhu-
baneshwar. Electronic proceedings... Bhubaneshwar:IEEE, 2015. p. 116-123. Available at:
<http://ieeexplore.ieee.org/document/7053814/>. Access on: 16 Mar. 2016.

RAI, R.; MEHFUZ, S.; SAHOO, G. Efficient migration of application to clouds: Analysis and
comparison. GSTF Journal on Computing (JoC), v. 3, n. 3, p. 58, Dec. 2013. Available at:
<http://dl6.globalstf.org/index.php/joc/article/download/507/524>. Access on: 08 Sep. 2016.

RAI, R.; SAHOO, G.; MEHFUZ, S. Exploring the factors influencing the cloud computing
adoption: a systematic study on cloud migration. SpringerPlus, v. 4, n. 1, p. 197, Apr. 2015.
Available at: <https://link.springer.com/article/10.1186/s40064-015-0962-2>. Access on: 04 Sep.
2016.

RIMAL, B. P.; CHOI, E.; LUMB, I. A taxonomy and survey of cloud computing sys-
tems. In: INTERNATIONAL JOINT CONFERENCE ON INC, IMS AND IDC, 5., 2009,
Washington. Electronic proceedings... Washington:ACM, 2009. p. 44-51. Available at:
<http://dl.acm.org/citation.cfm?id=1684085>. Access on: 05 Dec. 2016.

SAADEH, E.; KOURIE, D.; BOAKE, A. Fine-grain transformations to refactor uml
models. In: WARM UP WORKSHOP FOR ACM/IEEE ICSE, 6., 2009, Cape
Town. Electronic proceedings... Cape Town:ACM, 2009. p. 45-51. Available at:
<http://dl.acm.org/ft_gateway.cfm?id=1527048>. Access on: 20 Sep. 2016.

SANDERSON, D. Programming google app engine with JAVA: build & run scalable java
applications on google’s infrastructure. Sebastopol: O’Reilly Media, 2015.

SCANDURRA, P. et al. Challenges and assessment in migrating it legacy applications to the
cloud. In: MAINTENANCE AND EVOLUTION OF SERVICE-ORIENTED AND CLOUD-
BASED ENVIRONMENTS (MESOCA), 3., 2015, Bremen. Electronic proceedings... Bre-
men:IEEE, 2015. p. 7-14. Available at: <http://ieeexplore.ieee.org/document/7328120/>. Access
on: 23 Feb. 2016.

SILVA, D.; TERRA, R.; VALENTE, M. T. Recommending automated extract method refac-
torings. In: INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION, 22.,
2014, Hyderabad. Electronic proceedings... Hyderabad:ACM, 2014. p. 146-156. Available at:
<http://dl.acm.org/citation.cfm?doid=2597008.2597141>. Access on: 21 Jun. 2016.

SOSINSKY, B. Cloud computing bible. Hoboken: John Wiley & Sons, 2010. v. 762.

67

SZŐKE, G. et al. Faultbuster: An automatic code smell refactoring toolset. In: SOURCE CODE
ANALYSIS AND MANIPULATION (SCAM), 12., 2015, Bremen. Electronic proceedings...
Bremen:IEEE, 2015. p. 253-258. Available at: <http://ieeexplore.ieee.org/document/7335422/>.
Access on: 16 Feb. 2016.

TERRA, R. et al. Recommending refactorings to reverse software architecture erosion. In: EURO-
PEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING (CSMR),
16., 2012, Bremen. Electronic proceedings... Bremen:IEEE, 2012. p. 335-340. Available at:
<http://ieeexplore.ieee.org/document/6178900/>. Access on: 08 Feb. 2016.

TRAN, V. et al. Application migration to cloud: a taxonomy of critical factors. In: INTER-
NATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR CLOUD COMPUTING,
2., 2011, Honolulu. Electronic proceedings... Honolulu:ACM, 2011. p. 22-28. Available at:
<http://dl.acm.org/citation.cfm?id=1985505>. Access on: 27 Dec. 2016.

VAQUERO, L. M. et al. A break in the clouds: towards a cloud definition. ACM SIGCOMM
Computer Communication Review, New York, v. 39, n. 1, p. 50–55, Jan. 2008. Available at:
<http://dl.acm.org/citation.cfm?id=1496100>. Access on: 04 Apr. 2016.

VASCONCELOS, M.; MENDONÇA, N. C.; MAIA, P. H. M. Cloud detours: A non-intrusive
approach for automatic software adaptation to the cloud. In: . [S.l.: s.n.]. In: EURO-
PEAN CONFERENCE ON SERVICE-ORIENTED AND CLOUD COMPUTING, 9306. ,
2015, Taormina. Electronic proceedings... Taormina:Springer, 2015. p. 181-195. Available at:
<https://link.springer.com/chapter/10.1007/978-3-319-24072-5_13>. Access on: 12 Jun. 2016.

VU, Q. H.; ASAL, R. Legacy application migration to the cloud: Practicability and methodology.
In: WORLD CONGRESS ON SERVICES, 8., 2012, Honolulu. Electronic proceedings...
Honolulu:IEEE, 2012. p. 270-277. Available at: <http://ieeexplore.ieee.org/document/6274061/>.
Access on: 04 Feb. 2016.

ZHANG, Q.; CHENG, L.; BOUTABA, R. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, v. 1, n. 1, p. 7–18, Apr. 2010.
Available at: <https://link.springer.com/article/10.1007/s13174-010-0007-6>. Access on: 01 Sep.
2016.

ZHAO, J.-F.; ZHOU, J.-T. Strategies and methods for cloud migration. International Jour-
nal of Automation and Computing, v. 11, n. 2, p. 143–152, Apr. 2014. Available at:
<https://link.springer.com/article/10.1007/s11633-014-0776-7>. Access on: 05 Jun. 2016.

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introduction
	Structure of the dissertation

	Objectives
	General
	Specific

	Theoretical Background
	Cloud Computing
	Features
	Service Models
	Deployment Models

	Migration of applications to the cloud
	Classification of migration studies
	Service Level Migration
	Migration Strategies

	Refactoring
	Chapter summary

	Related work
	Cloud Migration Approaches
	Manual Approaches
	(Semi)Automatic Approaches

	Refactoring Recommendation
	Chapter summary

	Cloud Restriction Solver
	Overview
	CRS Framework
	Identification Engine
	Refactoring Engine

	CRS Instantiation
	Chapter summary

	CRS4GAE
	Google App Engine
	Restrictions

	Instantiation of CRS for GAE
	Identification Engine
	Refatoring Engine

	Chapter summary

	Usage Example
	JAX-RS File Upload
	Servlet with Thread
	Pebble
	Chapter summary

	Conclusion
	Benefits
	Limitations
	Future Work

	REFERENCES

